Synthetic mRNA pp 163-175 | Cite as

FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines

  • Sebastian Kreiter
  • Mustafa Diken
  • Abderraouf Selmi
  • Jutta Petschenka
  • Özlem Türeci
  • Ugur Sahin
Part of the Methods in Molecular Biology book series (MIMB, volume 1428)

Abstract

Intranodal immunization with antigen-encoding naked mRNA has proven to be an efficacious and safe approach to induce antitumor immunity. Thanks to its unique characteristics, mRNA can act not only as a source for antigen but also as an adjuvant for activation of the immune system. The search for additional adjuvants that can be combined with mRNA to further improve the potency of the immunization revealed Fms-like tyrosine kinase 3 (FLT3) ligand as a potent candidate. Systemic administration of the dendritic cell-activating FLT3 ligand prior to or along with mRNA immunization-enhanced priming and expansion of antigen-specific CD8+ T cells in lymphoid organs, T-cell homing into melanoma tumors, and therapeutic activity of the intranodally administered mRNA. Both compounds demonstrate a successful combination in terms of boosting the immune response. This chapter describes methods for intranodal immunization with naked mRNA by co-administration of FLT3 ligand, which leads to strong synergistic effects.

Key words

FLT3 ligand IVT-RNA RNA vaccine Intranodal injection Dendritic cell Cancer vaccination Immunotherapy Vaccine adjuvants 

References

  1. 1.
    Wolff JA et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465CrossRefPubMedGoogle Scholar
  2. 2.
    Chattopadhyay S, Sen GC (2014) dsRNA-activation of TLR3 and RLR signaling: gene induction-dependent and independent effects. J Interferon Cytokine Res 34:427–36CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13:759CrossRefPubMedGoogle Scholar
  4. 4.
    Holtkamp S et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009CrossRefPubMedGoogle Scholar
  5. 5.
    Kallen KJ, Thess A (2014) A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines 2:10CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kariko K, Kuo A, Barnathan E (1999) Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther 6:1092CrossRefPubMedGoogle Scholar
  7. 7.
    Kreiter S, Diken M, Selmi A, Tureci O, Sahin U (2011) Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 23:399CrossRefPubMedGoogle Scholar
  8. 8.
    Diken M et al (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702CrossRefPubMedGoogle Scholar
  9. 9.
    Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465CrossRefPubMedGoogle Scholar
  10. 10.
    Van Lint S, Heirman C, Thielemans K, Breckpot K (2013) mRNA: From a chemical blueprint for protein production to an off-the-shelf therapeutic. Hum Vaccin Immunother 9:265CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kreiter S et al (2010) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031CrossRefPubMedGoogle Scholar
  12. 12.
    Conry RM et al (1995) Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 55:1397PubMedGoogle Scholar
  13. 13.
    Uchida S et al (2013) In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS One 8, e56220CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1CrossRefPubMedGoogle Scholar
  15. 15.
    Diken M et al (2013) mTOR inhibition improves antitumor effects of vaccination with antigen-encoding RNA. Cancer Immunol Res 1:386CrossRefPubMedGoogle Scholar
  16. 16.
    Carralot JP et al (2004) Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 61:2418CrossRefPubMedGoogle Scholar
  17. 17.
    MartIn-Fontecha A et al (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kreiter S et al (2011) FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 71:6132CrossRefPubMedGoogle Scholar
  19. 19.
    Matthews W, Jordan CT, Wiegand GW, Pardoll D, Lemischka IR (1991) A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell 65:1143CrossRefPubMedGoogle Scholar
  20. 20.
    Gregory SH, Sagnimeni AJ, Zurowski NB, Thomson AW (2001) Flt3 ligand pretreatment promotes protective immunity to Listeria monocytogenes. Cytokine 13:202CrossRefPubMedGoogle Scholar
  21. 21.
    Parajuli P et al (2001) Immunization with wild-type p53 gene sequences coadministered with Flt3 ligand induces an antigen-specific type 1 T-cell response. Cancer Res 61:8227PubMedGoogle Scholar
  22. 22.
    Merad M, Sugie T, Engleman EG, Fong L (2002) In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood 99:1676CrossRefPubMedGoogle Scholar
  23. 23.
    Fong L et al (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A 98:8809CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jefford M et al (2003) Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood 102:1753CrossRefPubMedGoogle Scholar
  25. 25.
    Fong CL, Hui KM (2002) Generation of potent and specific cellular immune responses via in vivo stimulation of dendritic cells by pNGVL3-hFLex plasmid DNA and immunogenic peptides. Gene Ther 9:1127CrossRefPubMedGoogle Scholar
  26. 26.
    Pulendran B et al (1998) Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J Exp Med 188:2075CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sumida SM et al (2004) Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 114:1334CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Diken M, Kreiter S, Selmi A, Tureci O, Sahin U (2013) Antitumor vaccination with synthetic mRNA: strategies for in vitro and in vivo preclinical studies. Methods Mol Biol 969:235CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sebastian Kreiter
    • 1
  • Mustafa Diken
    • 1
  • Abderraouf Selmi
    • 1
  • Jutta Petschenka
    • 1
  • Özlem Türeci
    • 1
  • Ugur Sahin
    • 1
  1. 1.TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg UniversityTRON gGmbHMainzGermany

Personalised recommendations