NMR-Based Metabolomic Analysis of Normal and Inflamed Gut

  • Daniel J. Kao
  • Jordi M. Lanis
  • Erica Alexeev
  • Douglas J. KominskyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1422)


Crohn’s disease and ulcerative colitis, the two major forms of idiopathic inflammatory bowel disease (IBD), are thought to occur through a loss of intestinal barrier leading to an inappropriate immune response toward intestinal microbiota. While genome-wide association studies (GWAS) have provided much information about susceptibility loci associated with these diseases, the etiology of IBD is still unknown. Metabolomic analysis allows for the comprehensive measurement of multiple small molecule metabolites in biological samples. During the past decade, metabolomic techniques have yielded novel and potentially important findings, revealing insight into metabolic perturbations associated with these diseases. This chapter provides metabolomic methodologies describing a nuclear magnetic resonance (NMR)-based non-targeted approach that has been utilized to make important contributions toward a better understanding of IBD.

Key words

Metabolomics Nuclear magnetic resonance Inflammatory bowel disease Intestinal epithelium Mucosa 


  1. 1.
    Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640CrossRefPubMedGoogle Scholar
  2. 2.
    Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58:1152–1167CrossRefPubMedGoogle Scholar
  3. 3.
    Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434CrossRefPubMedGoogle Scholar
  4. 4.
    Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307–317CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Manichanh C, Borruel N, Casellas F, Guarner F (2012) The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 9:599–608CrossRefPubMedGoogle Scholar
  6. 6.
    Sartor RB (1995) Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn’s disease. Gastroenterol Clin North Am 24:475–507PubMedGoogle Scholar
  7. 7.
    Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022CrossRefPubMedGoogle Scholar
  8. 8.
    Hatoum OA, Binion DG, Gutterman DD (2005) Paradox of simultaneous intestinal ischaemia and hyperaemia in inflammatory bowel disease. Eur J Clin Invest 35:599–609CrossRefPubMedGoogle Scholar
  9. 9.
    Haddad JJ (2003) Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor-1alpha. Crit Care 7:47–54CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kokura S, Yoshida N, Yoshikawa T (2002) Anoxia/reoxygenation-induced leukocyte-endothelial cell interactions. Free Radic Biol Med 33:427–432CrossRefPubMedGoogle Scholar
  11. 11.
    Saadi S, Wrenshall LE, Platt JL (2002) Regional manifestations and control of the immune system. FASEB J 16:849–856CrossRefPubMedGoogle Scholar
  12. 12.
    Cummins EP, Seeballuck F, Keely SJ et al (2008) The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–165CrossRefPubMedGoogle Scholar
  13. 13.
    Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106CrossRefGoogle Scholar
  14. 14.
    Furuta GT, Turner JR, Taylor CT et al (2001) Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J Exp Med 193:1027–1034CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Glover LE, Colgan SP (2011) Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 140:1748–1755CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jostins L, Ripke S, Weersma RK et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8:458–466CrossRefPubMedGoogle Scholar
  18. 18.
    Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625CrossRefPubMedGoogle Scholar
  20. 20.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703CrossRefPubMedGoogle Scholar
  21. 21.
    Andriulli A, Loperfido S, Napolitano G et al (2007) Incidence rates of post-ERCP complications: a systematic survey of prospective studies. Am J Gastroenterol 102:1781–1788CrossRefPubMedGoogle Scholar
  22. 22.
    Glunde K, Serkova NJ (2006) Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 7:1109–1123CrossRefPubMedGoogle Scholar
  23. 23.
    Klawitter J, Kominsky DJ, Brown JL et al (2009) Metabolic characteristics of imatinib resistance in chronic myeloid leukaemia cells. Br J Pharmacol 158:588–600CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kominsky DJ, Klawitter J, Brown JL, Boros LG, Melo JV, Eckhardt SG, Serkova NJ (2009) Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL-positive cells. Clin Cancer Res 15:3442–3450CrossRefPubMedGoogle Scholar
  25. 25.
    Kominsky DJ, Keely S, MacManus CF et al (2011) An endogenously anti-inflammatory role for methylation in mucosal inflammation identified through metabolite profiling. J Immunol 186:6505–6514CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Romick-Rosendale LE, Goodpaster AM, Hanwright PJ, Patel NB, Wheeler ET, Chona DL, Kennedy MA (2009) NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril). Magn Reson Chem 47(Suppl 1):S36–S46CrossRefPubMedGoogle Scholar
  27. 27.
    Schicho R, Nazyrova A, Shaykhutdinov R, Duggan G, Vogel HJ, Storr M (2010) Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by (1)H NMR spectroscopy. J Proteome Res 9:6265–6273CrossRefPubMedGoogle Scholar
  28. 28.
    Hong YS, Ahn YT, Park JC et al (2010) 1H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model. Arch Pharm Res 33:1091–1101CrossRefPubMedGoogle Scholar
  29. 29.
    Dong F, Zhang L, Hao F, Tang H, Wang Y (2013) Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy. J Proteome Res 12:2958–2966CrossRefPubMedGoogle Scholar
  30. 30.
    Williams HR, Cox IJ, Walker DG et al (2009) Characterization of inflammatory bowel disease with urinary metabolic profiling. Am J Gastroenterol 104:1435–1444CrossRefPubMedGoogle Scholar
  31. 31.
    Williams HR, Willsmore JD, Cox IJ, Walker DG, Cobbold JF, Taylor-Robinson SD, Orchard TR (2012) Serum metabolic profiling in inflammatory bowel disease. Dig Dis Sci 57:2157–2165CrossRefPubMedGoogle Scholar
  32. 32.
    Jacobs DM, Deltimple N, van Velzen E, van Dorsten FA, Bingham M, Vaughan EE, van Duynhoven J (2008) (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed 21:615–626CrossRefPubMedGoogle Scholar
  33. 33.
    Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Wang Y (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6:546–551CrossRefPubMedGoogle Scholar
  34. 34.
    Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Gunther U, Nielsen OH (2015) Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11:122–133CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Balasubramanian K, Kumar S, Singh RR, Sharma U, Ahuja V, Makharia GK, Jagannathan NR (2009) Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magn Reson Imaging 27:79–86CrossRefPubMedGoogle Scholar
  36. 36.
    Bjerrum JT, Nielsen OH, Hao F, Tang H, Nicholson JK, Wang Y, Olsen J (2010) Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. J Proteome Res 9:954–962CrossRefPubMedGoogle Scholar
  37. 37.
    Sharma U, Singh RR, Ahuja V, Makharia GK, Jagannathan NR (2010) Similarity in the metabolic profile in macroscopically involved and un-involved colonic mucosa in patients with inflammatory bowel disease: an in vitro proton ((1)H) MR spectroscopy study. Magn Reson Imaging 28:1022–1029CrossRefPubMedGoogle Scholar
  38. 38.
    Serkova NJ, Glunde K (2009) Metabolomics of cancer. Methods Mol Biol 520:273–295CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Daniel J. Kao
    • 1
    • 2
  • Jordi M. Lanis
    • 1
    • 2
  • Erica Alexeev
    • 1
    • 2
  • Douglas J. Kominsky
    • 3
    Email author
  1. 1.Department of MedicineThe University of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Mucosal Inflammation ProgramThe University of Colorado Anschutz Medical CampusAuroraUSA
  3. 3.Department of Microbiology and ImmunologyMontana State UniversityBozemanUSA

Personalised recommendations