Advertisement

Characterization of Colorectal Cancer Development in Apcmin/+ Mice

  • ILKe NalbantogluEmail author
  • Valerie Blanc
  • Nicholas O. Davidson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1422)

Abstract

The Apc min/+ mouse provides an excellent experimental model for studying genetic, environmental, and therapeutic aspects of intestinal neoplasia in humans. In this chapter, we will describe techniques for studying colon cancer development in Apc min/+ mice on C57BL/6J (B6) background, focusing on the roles of environmental modifiers, including Dextran Sulfate Sodium (DSS), high fat diet, and bile acid supplementation in the context of experimental colorectal cancer. This chapter also includes protocols describing extraction and purification of DSS-contaminated RNA, as well as sampling, harvesting, and tissue processing. The common pathologic lesions encountered in these animals are described in detail.

Key words

Apcmin/+ Colorectal cancer Adenoma Dextran sulfate sodium High fat Bile acids 

Notes

Acknowledgment

Work cited in this review was supported by the following grants: HL38180, DK56260 and Digestive Disease Research Core Center P30DK52574 to N.O.D.

References

  1. 1.
    American Cancer Society (2014) Colorectal cancer facts & figures 2014–2016. American Cancer Society, Atlanta, GAGoogle Scholar
  2. 2.
    American Cancer Society (2015) Surveillance research, 2015. American Cancer Society, Atlanta, GAGoogle Scholar
  3. 3.
    Jasperson KW, Tuohy TM, Neklason DW et al (2010) Hereditary and familial colon cancer. Gastroenterology 138:2044–2058CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chan AT, Giovannucci EL (2010) Primary prevention of colorectal cancer. Gastroenterology 138:2029–2043CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140:1807–1816CrossRefPubMedGoogle Scholar
  6. 6.
    Walter V, Jansen L, Hoffmeister M et al (2014) Smoking and survival of colorectal cancer patients: systematic review and meta-analysis. Ann Oncol 25:1517–1525CrossRefPubMedGoogle Scholar
  7. 7.
    Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138:2059–2072CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liang J, Lin C, Hu F et al (2013) APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and meta-analysis. Am J Epidemiol 177:1169–1179CrossRefPubMedGoogle Scholar
  9. 9.
    Taketo MM, Edelmann W (2009) Mouse models of colon cancer. Gastroenterology 136:780–798CrossRefPubMedGoogle Scholar
  10. 10.
    Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324CrossRefPubMedGoogle Scholar
  11. 11.
    Bilger A, Shoemaker AR, Gould KA et al (1996) Manipulation of the mouse germline in the study of Min-induced neoplasia. Semin Cancer Biol 7:249–260CrossRefPubMedGoogle Scholar
  12. 12.
    Khazaie K, Zadeh M, Khan MW et al (2012) Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 109:10462–10467CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shoemaker AR, Gould KA, Luongo C et al (1997) Studies of neoplasia in the Min mouse. Biochim Biophys Acta 18:F25–48Google Scholar
  14. 14.
    Cooper HS, Everley L, Chang WC et al (2001) The role of mutant Apc in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium-induced colitis. Gastroenterology 121:1407–1416CrossRefPubMedGoogle Scholar
  15. 15.
    Giammanco A, Blanc V, Montenegro G et al (2014) Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development. Cancer Res 74:5322–5335CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tanaka T, Kohno H, Suzuki R et al (2006) Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc(Min/+) mice: inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms. Int J Cancer 118:25–34CrossRefPubMedGoogle Scholar
  17. 17.
    Xie Y, Matsumoto H, Nalbantoglu I et al (2013) Intestine-specific Mttp deletion increases the severity of experimental colitis and leads to greater tumor burden in a model of colitis associated cancer. PLoS One 8, e67819CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baltgalvis KA, Berger FG, Pena MM et al (2009) The interaction of a high-fat diet and regular moderate intensity exercise on intestinal polyp development in Apc Min/+ mice. Cancer Prev Res 2:641–649CrossRefGoogle Scholar
  19. 19.
    Day SD, Enos RT, McClellan JL et al (2013) Linking inflammation to tumorigenesis in a mouse model of high-fat-diet-enhanced colon cancer. Cytokine 64:454–462CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Newberry EP, Xie Y, Kennedy SM et al (2006) Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology 44:1191–1205CrossRefPubMedGoogle Scholar
  21. 21.
    Cao H, Luo S, Xu M et al (2014) The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling. Fam Cancer 13:563–571CrossRefPubMedGoogle Scholar
  22. 22.
    Mahmoud NN, Dannenberg AJ, Bilinski RT et al (1999) Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis 20:299–303CrossRefPubMedGoogle Scholar
  23. 23.
    Kerr TA, Ciorba MA, Matsumoto H et al (2012) Dextran sodium sulfate inhibition of real-time polymerase chain reaction amplification: a poly-A purification solution. Inflamm Bowel Dis 18:344–348CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dharmarajan S, Newberry EP, Montenegro G et al (2013) Liver fatty acid-binding protein (L-Fabp) modifies intestinal fatty acid composition and adenoma formation in ApcMin/+ mice. Cancer Prev Res 6:1026–1037CrossRefGoogle Scholar
  25. 25.
    Atlas of Laboratory Mouse Histology (2004) Texas histopages. http://ctrgenpath.net/static/atlas/mousehistology
  26. 26.
    Preston SL, Leedham SJ, Oukrif D et al (2008) The development of duodenal microadenomas in FAP patients: the human correlate of the Min mouse. J Pathol 214:294–301CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • ILKe Nalbantoglu
    • 1
    Email author
  • Valerie Blanc
    • 2
  • Nicholas O. Davidson
    • 2
  1. 1.Department of Pathology and ImmunologyWashington University School of Medicine in St. LouisSt. LouisUSA
  2. 2.Department of MedicineWashington University School of Medicine in St. LouisSt. LouisUSA

Personalised recommendations