Skip to main content

Mesenchymal Stem Cells in Cardiology

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vodyanik MA, Yu J, Zhang X et al (2010) A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7:718–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abu-Issa R, Kirby ML (2007) Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 23:45–68

    Article  CAS  PubMed  Google Scholar 

  3. Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19

    Article  CAS  PubMed  Google Scholar 

  4. Montserrat N, Jopling C, Izpisua Belmonte JC (2010) Understanding the molecular basis for cardiomyocyte cell cycle regulation: new insights in cardiac regeneration after injury? Expert Rev Cardiovasc Ther 8:1043–1045

    Article  PubMed  Google Scholar 

  5. Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90:1044–1054

    Article  CAS  PubMed  Google Scholar 

  6. MacLellan WR, Schneider MD (2000) Genetic dissection of cardiac growth control pathways. Annu Rev Physiol 62:289–319

    Article  CAS  PubMed  Google Scholar 

  7. Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86:1107–1113

    Article  CAS  PubMed  Google Scholar 

  8. Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Go AS, Mozaffarian D, Roger VL et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Article  PubMed  Google Scholar 

  11. Jennings RB, Steenbergen C, Reimer KA (1995) Myocardial ischemia and reperfusion. Monogr Pathol 37:47–80

    CAS  PubMed  Google Scholar 

  12. Graham RM, Frazier DP, Thompson JW et al (2004) A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol 207:3189–3200

    Article  CAS  PubMed  Google Scholar 

  13. Kubasiak LA, Hernandez OM, Bishopric NH et al (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99:12825–12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    Article  CAS  PubMed  Google Scholar 

  15. Becker RO, Chapin S, Sherry R (1974) Regeneration of the ventricular myocardium in amphibians. Nature 248:145–147

    Article  CAS  PubMed  Google Scholar 

  16. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Article  CAS  PubMed  Google Scholar 

  17. Hatzistergos KE, Blum A, Ince T et al (2011) What is the oncologic risk of stem cell treatment for heart disease? Circ Res 108:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Menasche P, Hagege AA, Vilquin JT et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083

    Article  PubMed  Google Scholar 

  19. Menasche P (2003) Myoblast-based cell transplantation. Heart Fail Rev 8:221–227

    Article  PubMed  Google Scholar 

  20. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  21. Bolli R, Chugh AR, D'Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO):initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    Article  PubMed  PubMed Central  Google Scholar 

  22. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  23. Caplan AI (1986) Molecular and cellular differentiation of muscle, cartilage, and bone in the developing limb. Prog Clin Biol Res 217B:307–318

    CAS  PubMed  Google Scholar 

  24. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  25. Friedenstein AJ, Chailakhyan RK, Latsinik NV et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

    Article  CAS  PubMed  Google Scholar 

  26. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  27. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  PubMed  CAS  Google Scholar 

  28. Orbay H, Tobita M, Mizuno H (2012) Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int 2012:461718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  30. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roufosse CA, Direkze NC, Otto WR et al (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597

    Article  CAS  PubMed  Google Scholar 

  33. He Q, Wan C, Li G (2007) Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells 25:69–77

    Article  CAS  PubMed  Google Scholar 

  34. Caterson EJ, Nesti LJ, Danielson KG et al (2002) Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation. Mol Biotechnol 20:245–256

    Article  CAS  PubMed  Google Scholar 

  35. Chang Y, Hsieh PH, Chao CC (2009) The efficiency of Percoll and Ficoll density gradient media in the isolation of marrow derived human mesenchymal stem cells with osteogenic potential. Chang Gung Med J 32:264–275

    PubMed  Google Scholar 

  36. Harichandan A, Sivasubramaniyan K, Buhring HJ (2013) Prospective isolation and characterization of human bone marrow-derived MSCs. Adv Biochem Eng Biotechnol 129:1–17

    CAS  PubMed  Google Scholar 

  37. Lennon DP, Caplan AI (2006) Isolation of human marrow-derived mesenchymal stem cells. Exp Hematol 34:1604–1605

    Article  CAS  PubMed  Google Scholar 

  38. Majumdar MK, Banks V, Peluso DP et al (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185:98–106

    Article  CAS  PubMed  Google Scholar 

  39. Wolfe M, Pochampally R, Swaney W et al (2008) Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Methods Mol Biol 449:3–25

    PubMed  Google Scholar 

  40. Colter DC, Class R, DiGirolamo CM et al (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A 97:3213–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou Z, Jiang EL, Wang M et al (2005) Comparative study on various subpopulations in mesenchymal stem cells of adult bone marrow. Zhongguo Shi Yan Xue Ye Xue Za Zhi 13:54–58

    PubMed  Google Scholar 

  42. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  43. Jiang Y, Vaessen B, Lenvik T et al (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  CAS  PubMed  Google Scholar 

  44. Yoon YS, Wecker A, Heyd L et al (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115:326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D'Ippolito G, Diabira S, Howard GA et al (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  CAS  Google Scholar 

  46. Rossini A, Frati C, Lagrasta C et al (2011) Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 89:650–660

    Article  CAS  PubMed  Google Scholar 

  47. Blazquez-Martinez A, Chiesa M, Arnalich F et al (2014) c-Kit identifies a subpopulation of mesenchymal stem cells in adipose tissue with higher telomerase expression and differentiation potential. Differentiation 87(3–4):147–160

    Article  CAS  PubMed  Google Scholar 

  48. Varma MJ, Breuls RG, Schouten TE et al (2007) Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 16:91–104

    Article  PubMed  Google Scholar 

  49. Abarbanell AM, Coffey AC, Fehrenbacher JW et al (2009) Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart. Ann Thorac Surg 88:1036–1043

    Article  PubMed  Google Scholar 

  50. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  51. Hare JM, Fishman JE, Gerstenblith G et al (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308:2369–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Le Blanc K, Tammik C, Rosendahl K et al (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    Article  PubMed  CAS  Google Scholar 

  53. Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10:228–241

    Article  CAS  PubMed  Google Scholar 

  54. Tse WT, Pendleton JD, Beyer WM et al (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    Article  CAS  PubMed  Google Scholar 

  55. Rasmusson I, Ringden O, Sundberg B et al (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213

    Article  PubMed  Google Scholar 

  56. Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490

    Article  CAS  PubMed  Google Scholar 

  57. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zangi L, Margalit R, Reich-Zeliger S et al (2009) Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 27:2865–2874

    Article  CAS  PubMed  Google Scholar 

  59. Fan M, Chen W, Liu W et al (2010) The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuvenation Res 13:429–438

    Article  PubMed  Google Scholar 

  60. O'Marcaigh AS, Cowan MJ (1997) Bone marrow transplantation for inherited diseases. Curr Opin Oncol 9:126–130

    PubMed  Google Scholar 

  61. Huang XP, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429

    Article  CAS  PubMed  Google Scholar 

  62. Quevedo HC, Hatzistergos KE, Oskouei BN et al (2009) Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A 106:14022–14027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Makkar RR, Price MJ, Lill M et al (2005) Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. J Cardiovasc Pharmacol Ther 10:225–233

    Article  PubMed  Google Scholar 

  64. Shi Y, Hu G, Su J et al (2010) Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res 20:510–518

    Article  CAS  PubMed  Google Scholar 

  65. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    Article  CAS  PubMed  Google Scholar 

  66. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jordan JE, Zhao ZQ, Vinten-Johansen J (1999) The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 43:860–878

    Article  CAS  PubMed  Google Scholar 

  68. Ortiz LA, Dutreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104:11002–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Volarevic V, Al-Qahtani A, Arsenijevic N et al (2010) Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 43:255–263

    Article  CAS  PubMed  Google Scholar 

  70. Nemeth K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen L, Tredget EE, Wu PY et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhang QZ, Su WR, Shi SH et al (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28:1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gonzalez MA, Gonzalez-Rey E, Rico L et al (2009) Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136:978–989

    Article  CAS  PubMed  Google Scholar 

  75. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    Article  CAS  PubMed  Google Scholar 

  76. van Amerongen MJ, Harmsen MC, van Rooijen N et al (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cho DI, Kim MR, Jeong HY et al (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46, e70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jung YJ, Ju SY, Yoo ES et al (2007) MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy 9:451–458

    Article  CAS  PubMed  Google Scholar 

  79. Spaggiari GM, Abdelrazik H, Becchetti F et al (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583

    Article  CAS  PubMed  Google Scholar 

  80. Chiesa S, Morbelli S, Morando S et al (2011) Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci U S A 108:17384–17389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. DelaRosa O, Lombardo E, Beraza A et al (2009) Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A 15:2795–2806

    Article  CAS  PubMed  Google Scholar 

  82. Najar M, Raicevic G, Boufker HI et al (2010) Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton’s Jelly and bone marrow sources. Cell Immunol 264:171–179

    Article  CAS  PubMed  Google Scholar 

  83. Ren G, Zhang L, Zhao X et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150

    Article  CAS  PubMed  Google Scholar 

  84. Chabannes D, Hill M, Merieau E et al (2007) A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110:3691–3694

    Article  CAS  PubMed  Google Scholar 

  85. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  86. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  PubMed  Google Scholar 

  87. Krampera M, Cosmi L, Angeli R et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398

    Article  CAS  PubMed  Google Scholar 

  88. Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    Article  CAS  PubMed  Google Scholar 

  89. Merfeld-Clauss S, Gollahalli N, March KL et al (2010) Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng Part A 16:2953–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Traktuev DO, March KL, Tkachuk VA et al (2006) Adipose tissue stromal cells – multipotent cells with therapeutic potential for stimulation of angiogenesis in tissue ischemia. Kardiologiia 46:53–63

    CAS  PubMed  Google Scholar 

  91. Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li X, Yu X, Lin Q et al (2007) Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol 42:295–303

    Article  CAS  PubMed  Google Scholar 

  93. Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21:1226–1238

    Article  CAS  PubMed  Google Scholar 

  94. Pijnappels DA, Schalij MJ, Ramkisoensing AA et al (2008) Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 103:167–176

    Article  CAS  PubMed  Google Scholar 

  95. Genovese JA, Spadaccio C, Chachques E et al (2009) Cardiac pre-differentiation of human mesenchymal stem cells by electrostimulation. Front Biosci (Landmark Ed) 14:2996–3002

    Article  CAS  Google Scholar 

  96. Wen L, Zhang C, Nong Y et al (2013) Mild electrical pulse current stimulation upregulates S100A4 and promotes cardiogenesis in MSC and cardiac myocytes coculture monolayer. Cell Biochem Biophys 65:43–55

    Article  CAS  PubMed  Google Scholar 

  97. Xu W, Zhang X, Qian H et al (2004) Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood) 229:623–631

    CAS  Google Scholar 

  98. Hahn JY, Cho HJ, Kang HJ et al (2008) Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol 51:33–943

    Article  CAS  Google Scholar 

  99. Forte G, Minieri M, Cossa P et al (2006) Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24:23–33

    Article  CAS  PubMed  Google Scholar 

  100. Mohanty S, Bose S, Jain KG et al (2013) TGFbeta1 contributes to cardiomyogenic-like differentiation of human bone marrow mesenchymal stem cells. Int J Cardiol 163:93–99

    Article  PubMed  Google Scholar 

  101. Li H, Yu B, Zhang Y et al (2006) Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun 341:320–325

    Article  CAS  PubMed  Google Scholar 

  102. Xu M, Wani M, Dai YS et al (2004) Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation 110:2658–2665

    Article  PubMed  Google Scholar 

  103. Xie XJ, Wang JA, Cao J et al (2006) Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacol Sin 27:1153–1158

    Article  CAS  PubMed  Google Scholar 

  104. Toma C, Pittenger MF, Cahill KS et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  105. Rota M, Kajstura J, Hosoda T et al (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci U S A 104:17783–17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648

    Article  CAS  PubMed  Google Scholar 

  107. Wei F, Wang TZ, Zhang J et al (2012) Mesenchymal stem cells neither fully acquire the electrophysiological properties of mature cardiomyocytes nor promote ventricular arrhythmias in infarcted rats. Basic Res Cardiol 107:274

    Article  PubMed  CAS  Google Scholar 

  108. Rose RA, Jiang H, Wang X et al (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 26:2884–2892

    Article  CAS  PubMed  Google Scholar 

  109. Silva GV, Litovsky S, Assad JA et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  CAS  PubMed  Google Scholar 

  110. Hatzistergos KE, Quevedo H, Oskouei BN et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107(7):913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang T, Xu Z, Jiang W et al (2006) Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol 109:74–81

    Article  PubMed  Google Scholar 

  112. Jazayeri M, Allameh A, Soleimani M et al (2008) Molecular and ultrastructural characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells. Cell Biol Int 32:1183–1192

    Article  CAS  PubMed  Google Scholar 

  113. Li Q, Xu X, Wang Z et al (2007) Investigation of canine mesenchymal stem cells differentiation to vascular endothelial cell in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 24:1348–1351

    CAS  PubMed  Google Scholar 

  114. Oswald J, Boxberger S, Jorgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    Article  PubMed  Google Scholar 

  115. Martens TP, See F, Schuster MD et al (2006) Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S18–S22

    Article  CAS  PubMed  Google Scholar 

  116. Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Article  CAS  PubMed  Google Scholar 

  117. Oskowitz A, McFerrin H, Gutschow M et al (2011) Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res 6:215–225

    Article  CAS  PubMed  Google Scholar 

  118. Tang YL, Zhao Q, Zhang YC et al (2004) Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept 117:3–10

    Article  CAS  PubMed  Google Scholar 

  119. Rubina K, Kalinina N, Efimenko A et al (2009) Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A 15:2039–2050

    Article  CAS  PubMed  Google Scholar 

  120. Tang J, Xie Q, Pan G et al (2006) Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 30:353–361

    Article  PubMed  Google Scholar 

  121. Markel TA, Wang Y, Herrmann JL et al (2008) VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol 295:H2308–H2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yoon CH, Koyanagi M, Iekushi K et al (2010) Mechanism of improved cardiac function after bone marrow mononuclear cell therapy: role of cardiovascular lineage commitment. Circulation 121(18):2001–2011

    Article  PubMed  Google Scholar 

  123. Gomes SA, Rangel EB, Premer C et al (2013) S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc Natl Acad Sci U S A 110:2834–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Traktuev DO, Merfeld-Clauss S, Li J et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85

    Article  CAS  PubMed  Google Scholar 

  125. Ranganath SH, Levy O, Inamdar MS et al (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104

    Article  PubMed  Google Scholar 

  127. Song H, Song BW, Cha MJ et al (2010) Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther 10:309–319

    Article  PubMed  Google Scholar 

  128. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626

    Article  CAS  PubMed  Google Scholar 

  129. Meredith JE, Fazeli B, Schwartz MA (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Assis AC, Carvalho JL, Jacoby BA et al (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19:219–230

    Article  PubMed  Google Scholar 

  131. Zhang XY, La Russa VF, Bao L et al (2002) Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 5:555–565

    Article  CAS  PubMed  Google Scholar 

  132. Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368

    Article  CAS  PubMed  Google Scholar 

  133. Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201

    Article  CAS  PubMed  Google Scholar 

  134. Li W, Ma N, Ong LL et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25:2118–2127

    Article  CAS  PubMed  Google Scholar 

  135. Song H, Kwon K, Lim S et al (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 19:402–407

    CAS  PubMed  Google Scholar 

  136. Yang J, Zhou W, Zheng W et al (2007) Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology 107:17–29

    Article  PubMed  Google Scholar 

  137. Tang YL, Tang Y, Zhang YC et al (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46:1339–1350

    Article  CAS  PubMed  Google Scholar 

  138. Cheng Z, Ou L, Zhou X et al (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16:571–579

    Article  CAS  PubMed  Google Scholar 

  139. Huang J, Zhang Z, Guo J et al (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106:1753–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Song H, Chang W, Lim S et al (2007) Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells. Stem Cells 25:1431–1438

    Article  CAS  PubMed  Google Scholar 

  141. Kanashiro-Takeuchi RM, Schulman IH, Hare JM (2011) Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration. J Mol Cell Cardiol 51:619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Behfar A, Yamada S, Crespo-Diaz R et al (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56:721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ray R, Novotny NM, Crisostomo PR et al (2008) Sex steroids and stem cell function. Mol Med 14:493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang YJ, Qian HY, Huang J et al (2008) Atorvastatin treatment improves survival and effects of implanted mesenchymal stem cells in post-infarct swine hearts. Eur Heart J 29:1578–1590

    Article  PubMed  Google Scholar 

  145. Li N, Zhang Q, Qian H et al (2014) Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Chin Med J (Engl) 127:1046–1051

    CAS  Google Scholar 

  146. Haider H, Lee YJ, Jiang S et al (2010) Phosphodiesterase inhibition with tadalafil provides longer and sustained protection of stem cells. Am J Physiol Heart Circ Physiol 299:H1395–H1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chacko SM, Ahmed S, Selvendiran K et al (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 299:C1562–C1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hu X, Yu SP, Fraser JL et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808

    Article  CAS  PubMed  Google Scholar 

  149. Katritsis DG, Sotiropoulou P, Giazitzoglou E et al (2007) Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace 9:167–171

    Article  PubMed  Google Scholar 

  150. Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    Article  PubMed  Google Scholar 

  151. Hare JM, Traverse JH, Henry TD et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mohyeddin-Bonab M, Mohamad-Hassani MR, Alimoghaddam K et al (2007) Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Arch Iran Med 10:467–473

    PubMed  Google Scholar 

  153. Karantalis V, DiFede DL, Gerstenblith G et al (2014) Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res 114:1302–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Heldman AW, DiFede DL, Fishman JE et al (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Trachtenberg B, Velazquez DL, Williams AR et al (2011) Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J 161:487–493

    Article  CAS  PubMed  Google Scholar 

  156. Williams AR, Trachtenberg B, Velazquez DL et al (2011) Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 108:792–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Anastasiadis K, Antonitsis P, Doumas A et al (2012) Stem cells transplantation combined with long-term mechanical circulatory support enhances myocardial viability in end-stage ischemic cardiomyopathy. Int J Cardiol 155:e51–e53

    Article  PubMed  Google Scholar 

  158. Suncion VY, Ghersin E, Fishman JE et al (2014) Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally? An analysis from the percutaneous stem cell injection delivery effects on neomyogenesis (POSEIDON) randomized trial. Circ Res 114:1292–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lee JW, Lee SH, Youn YJ et al (2014) A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci 29:23–31

    Article  PubMed  PubMed Central  Google Scholar 

  160. Abedin M, Tintut Y, Demer LL (2004) Mesenchymal stem cells and the artery wall. Circ Res 95:671–676

    Article  CAS  PubMed  Google Scholar 

  161. Hsu YC, Pasolli HA, Fuchs E (2011) Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chimenti I, Gaetani R, Barile L et al (2012) Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol 879:327–338

    Article  CAS  PubMed  Google Scholar 

  163. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  CAS  Google Scholar 

  164. Karantalis V, Balkan W, Schulman IH et al (2012) Cell-based therapy for prevention and reversal of myocardial remodeling. Am J Physiol Heart Circ Physiol 303:H256–H270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Carr CA, Stuckey DJ, Tan JJ et al (2011) Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 weeks—an MRI study. PLoS One 6, e25669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee ST, White AJ, Matsushita S et al (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57:455–465

    Article  PubMed  Google Scholar 

  167. Li TS, Cheng K, Malliaras K et al (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953

    Article  PubMed  PubMed Central  Google Scholar 

  168. Malliaras K, Li TS, Luthringer D et al (2012) Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  170. Williams AR, Hatzistergos KE, Addicott B et al (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213–223

    Article  PubMed  PubMed Central  Google Scholar 

  171. Mureli S, Gans CP, Bare DJ et al (2013) Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. Am J Physiol Heart Circ Physiol 304:H600–H609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nowbar AN, Mielewczik M, Karavassilis M et al (2014) Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ 348:g2688

    Article  PubMed  PubMed Central  Google Scholar 

  173. van Berlo JH, Kanisicak O, Maillet M et al (2014) c-kit cells minimally contribute cardiomyocytes to the heart. Nature 509(7500):337–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Hare M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

White, I.A., Sanina, C., Balkan, W., Hare, J.M. (2016). Mesenchymal Stem Cells in Cardiology. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics