Isolation of Pig Bone Marrow-Derived Mesenchymal Stem Cells

  • Dries A. M. Feyen
  • Frederieke van den Akker
  • Willy Noort
  • Steven A. J. Chamuleau
  • Pieter A. Doevendans
  • Joost P. G. SluijterEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1416)


Large animal models are an important preclinical tool for the evaluation of new interventions and their translation into clinical practice. The pig is a widely used animal model in multiple clinical fields, such as cardiology and orthopedics, and has been at the forefront of testing new therapeutics, including cell-based therapies. In the clinic, mesenchymal stem cells (MSCs) are used autologously, therefore isolated, and administrated into the same patient. For successful clinical translation of autologous approaches, the porcine model needs to test MSC in a similar manner. Since a limited number of MSCs can be isolated directly from the bone marrow, culturing techniques are needed to expand the population in vitro prior to therapeutic application. Here, we describe a protocol specifically tailored for the isolation and propagation of porcine-derived bone marrow MSCs.

Key words

MSC Bone marrow Porcine Isolation Expansion Cell culture 



This work is part of the Project P1.04 SMARTCARE of the BioMedical Materials institute, co-funded by the Dutch Ministry of Economic Affairs, Agriculture and Innovation. The financial contribution of the Dutch Heart Foundation is gratefully acknowledged. This work was further supported by a grant from the Alexandre Suerman program for MD/PhD students of the University Medical Center Utrecht, the Netherlands, the ZonMw-TAS program (#116002016) and the Netherlands CardioVascular Research Initiative (CVON): the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences.


  1. 1.
    Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20CrossRefPubMedGoogle Scholar
  2. 2.
    Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669CrossRefPubMedGoogle Scholar
  3. 3.
    Gnecchi M, Zhang Z, Ni A et al (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    van den Akker F, de Jager SC, Sluijter JP (2013) Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm 2013:181020PubMedPubMedCentralGoogle Scholar
  5. 5.
    Noort WA, Feye D, Van Den Akker F et al (2010) Mesenchymal stromal cells to treat cardiovascular disease: strategies to improve survival and therapeutic results. Panminerva Med 52:27–40PubMedGoogle Scholar
  6. 6.
    Magne D, Vinatier C, Julien M et al (2005) Mesenchymal stem cell therapy to rebuild cartilage. Trends Mol Med 11:519–526CrossRefPubMedGoogle Scholar
  7. 7.
    Knight MN, Hankenson KD (2013) Mesenchymal stem cells in bone regeneration. Adv Wound Care (New Rochelle) 2:306–316CrossRefGoogle Scholar
  8. 8.
    Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586CrossRefPubMedGoogle Scholar
  9. 9.
    Ball LM, Bernardo ME, Roelofs H et al (2007) Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 110:2764–2767CrossRefPubMedGoogle Scholar
  10. 10.
    Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2:262–271CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    van der Spoel TI, Jansen of Lorkeers SJ, Agostoni P et al (2011) Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 91:649–658CrossRefPubMedGoogle Scholar
  12. 12.
    van der Spoel TI, Vrijsen KR, Koudstaal S et al (2012) Transendocardial cell injection is not superior to intracoronary infusion in a porcine model of ischaemic cardiomyopathy: a study on delivery efficiency. J Cell Mol Med 16:2768–2776CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sahni D, Kaur GD, Jit H et al (2008) Anatomy & distribution of coronary arteries in pig in comparison with man. Indian J Med Res 127:564–570PubMedGoogle Scholar
  14. 14.
    Li WJ, Chiang H, Kuo TF et al (2009) Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J Tissue Eng Regen Med 3:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Noort WA, Oerlemans MI, Rozemuller H et al (2012) Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. J Cell Mol Med 16:1827–1839CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dries A. M. Feyen
    • 1
  • Frederieke van den Akker
    • 1
  • Willy Noort
    • 1
    • 2
  • Steven A. J. Chamuleau
    • 1
  • Pieter A. Doevendans
    • 1
    • 3
  • Joost P. G. Sluijter
    • 1
    • 3
    • 4
    Email author
  1. 1.Division Heart and Lungs, Department of CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of Cell BiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Interuniversity Cardiology Institute of the Netherlands (ICIN)UtrechtThe Netherlands
  4. 4.Experimental Cardiology Laboratory, Department of CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations