Advertisement

Preparing Samples for Crystallization of Bcl-2 Family Complexes

  • Marc Kvansakul
  • Peter E. CzabotarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1419)

Abstract

High-resolution protein structures determined by X-ray crystallography or NMR have proven invaluable for deciphering the molecular mechanisms underlying the function of a vast range of proteins. Here, we describe methods to generate complexes of proteins belonging to the Bcl-2 family of proteins with either biological ligands or small molecule antagonists.

Key words

Bcl-2 family proteins Structural biology X-ray crystallography Drug discovery 

Notes

Acknowledgements

This work was supported by an Australian Research Council Future Fellowship (FT130101349) to MK and a National Health and Medical Research Council Senior Research Fellowship to PEC as well as project grants 1079706, 1059331, and 1023055 (to PEC) and 1082383 and 1007918 (to MK). We also thank Amanda Voudouris for assistance in preparing the manuscript.

References

  1. 1.
    Kvansakul M, Hinds MG (2013) Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis 4:e909. doi: 10.1038/cddis.2013.436 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275(5302):983–986CrossRefPubMedGoogle Scholar
  3. 3.
    Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3):393–403. doi: 10.1016/j.molcel.2004.12.030 CrossRefPubMedGoogle Scholar
  4. 4.
    Yan N, Chai J, Lee ES, Gu L, Liu Q, He J, Wu JW, Kokel D, Li H, Hao Q, Xue D, Shi Y (2005) Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437(7060):831–837CrossRefPubMedGoogle Scholar
  5. 5.
    Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681CrossRefPubMedGoogle Scholar
  6. 6.
    Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews DW (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135(6):1074–1084. doi: 10.1016/j.cell.2008.11.010, S0092-8674(08)01439-6 [pii]CrossRefPubMedGoogle Scholar
  7. 7.
    Bleicken S, Jeschke G, Stegmueller C, Salvador-Gallego R, Garcia-Saez AJ, Bordignon E (2014) Structural model of active Bax at the membrane. Mol Cell 56(4):496–505. doi: 10.1016/j.molcel.2014.09.022 CrossRefPubMedGoogle Scholar
  8. 8.
    Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM, Colman PM, Kluck RM (2008) To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol Cell 30(3):369–380. doi: 10.1016/j.molcel.2008.04.005, S1097-2765(08)00265-7 [pii]CrossRefPubMedGoogle Scholar
  9. 9.
    Luft JR, Newman J, Snell EH (2014) Crystallization screening: the influence of history on current practice. Acta Crystallogr F Struct Biol Commun 70(Pt 7):835–853. doi: 10.1107/S2053230X1401262X CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Burton DR, Caria S, Marshall B, Barry M, Kvansakul M (2015) Structural basis of Deerpox virus-mediated inhibition of apoptosis. Acta Crystallogr D Biol Crystallogr 71(Pt 8):1593–1603. doi: 10.1107/S1399004715009402 CrossRefPubMedGoogle Scholar
  11. 11.
    Campbell S, Thibault J, Mehta N, Colman PM, Barry M, Kvansakul M (2014) Structural insight into BH3 domain binding of vaccinia virus antiapoptotic F1L. J Virol 88(15):8667–8677. doi: 10.1128/JVI.01092-14 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DC, Fairlie WD, Hinds MG, Colman PM (2007) Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci U S A 104(15):6217–6222. doi: 10.1073/pnas.0701297104 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clifton MC, Dranow DM, Leed A, Fulroth B, Fairman JW, Abendroth J, Atkins KA, Wallace E, Fan D, Xu G, Ni ZJ, Daniels D, Van Drie J, Wei G, Burgin AB, Golub TR, Hubbard BK, Serrano-Wu MH (2015) A maltose-binding protein fusion construct yields a robust crystallography platform for MCL1. PLoS One 10(4):e0125010. doi: 10.1371/journal.pone.0125010 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brouwer JM, Westphal D, Dewson G, Robin AY, Uren RT, Bartolo R, Thompson GV, Colman PM, Kluck RM, Czabotar PE (2014) Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers. Mol Cell 55(6):938–946. doi: 10.1016/j.molcel.2014.07.016 CrossRefPubMedGoogle Scholar
  15. 15.
    Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DC, Kluck RM, Adams JM, Colman PM (2013) Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152(3):519–531. doi: 10.1016/j.cell.2012.12.031 CrossRefPubMedGoogle Scholar
  16. 16.
    Suzuki N, Hiraki M, Yamada Y, Matsugaki N, Igarashi N, Kato R, Dikic I, Drew D, Iwata S, Wakatsuki S, Kawasaki M (2010) Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallogr D Biol Crystallogr 66(Pt 10):1059–1066. doi: 10.1107/S0907444910032944 CrossRefPubMedGoogle Scholar
  17. 17.
    Dewson G, Kratina T, Czabotar P, Day CL, Adams JM, Kluck RM (2009) Bak activation for apoptosis involves oligomerization of dimers via their alpha6 helices. Mol Cell 36(4):696–703. doi: 10.1016/j.molcel.2009.11.008, S1097-2765(09)00821-1 [pii]CrossRefPubMedGoogle Scholar
  18. 18.
    Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103(4):645–654, doi:S0092-8674(00)00167-7 [pii]CrossRefPubMedGoogle Scholar
  19. 19.
    Leshchiner ES, Braun CR, Bird GH, Walensky LD (2013) Direct activation of full-length proapoptotic BAK. Proc Natl Acad Sci U S A 110(11):E986–E995. doi: 10.1073/pnas.1214313110 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278(49):48935–48941. doi: 10.1074/jbc.M306289200 CrossRefPubMedGoogle Scholar
  21. 21.
    Hinds MG, Lackmann M, Skea GL, Harrison PJ, Huang DC, Day CL (2003) The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J 22(7):1497–1507. doi: 10.1093/emboj/cdg144 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381(6580):335–341. doi: 10.1038/381335a0 CrossRefPubMedGoogle Scholar
  23. 23.
    Petros AM, Medek A, Nettesheim DG, Kim DH, Yoon HS, Swift K, Matayoshi ED, Oltersdorf T, Fesik SW (2001) Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci U S A 98(6):3012–3017. doi: 10.1073/pnas.041619798 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Oberstein A, Jeffrey PD, Shi Y (2007) Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 282(17):13123–13132. doi: 10.1074/jbc.M700492200 CrossRefPubMedGoogle Scholar
  25. 25.
    Kvansakul M, Yang H, Fairlie WD, Czabotar PE, Fischer SF, Perugini MA, Huang DC, Colman PM (2008) Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ 15(10):1564–1571CrossRefPubMedGoogle Scholar
  26. 26.
    Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, Colman PM, Smith BJ, Fairlie WD (2009) Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. J Biol Chem 284(44):30508–30517. doi: 10.1074/jbc.M109.040725, M109.040725 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, Baell JB, Colman PM, Deshayes K, Fairbrother WJ, Flygare JA, Gibbons P, Kersten WJ, Kulasegaram S, Moss RM, Parisot JP, Smith BJ, Street IP, Yang H, Huang DC, Watson KG (2013) Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol 9(6):390–397. doi: 10.1038/nchembio.1246, nchembio.1246 [pii]CrossRefPubMedGoogle Scholar
  28. 28.
    Brady RM, Vom A, Roy MJ, Toovey N, Smith BJ, Moss RM, Hatzis E, Huang DC, Parisot JP, Yang H, Street IP, Colman PM, Czabotar PE, Baell JB, Lessene G (2014) De-novo designed library of benzoylureas as inhibitors of BCL-XL: synthesis, structural and biochemical characterization. J Med Chem 57(4):1323–1343. doi: 10.1021/jm401948b CrossRefPubMedGoogle Scholar
  29. 29.
    Tao ZF, Hasvold L, Wang L, Wang X, Petros AM, Park CH, Boghaert ER, Catron ND, Chen J, Colman PM, Czabotar PE, Deshayes K, Fairbrother WJ, Flygare JA, Hymowitz SG, Jin S, Judge RA, Koehler MF, Kovar PJ, Lessene G, Mitten MJ, Ndubaku CO, Nimmer P, Purkey HE, Oleksijew A, Phillips DC, Sleebs BE, Smith BJ, Smith ML, Tahir SK, Watson KG, Xiao Y, Xue J, Zhang H, Zobel K, Rosenberg SH, Tse C, Leverson JD, Elmore SW, Souers AJ (2014) Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett 5(10):1088–1093. doi: 10.1021/ml5001867 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Robin AY, Krishna Kumar K, Westphal D, Wardak AZ, Thompson GV, Dewson G, Colman PM, Czabotar PE (2015) Crystal structure of Bax bound to the BH3 peptide of Bim identifies important contacts for interaction. Cell Death Dis 6:e1809. doi: 10.1038/cddis.2015.141 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rautureau GJ, Yabal M, Yang H, Huang DC, Kvansakul M, Hinds MG (2012) The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 protein antagonist. Cell Death Dis 3:e443. doi: 10.1038/cddis.2012.178, cddis2012178 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535CrossRefPubMedGoogle Scholar
  33. 33.
    Certo M, Moore Vdel G, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9(5):351–365CrossRefPubMedGoogle Scholar
  34. 34.
    Simmons MJ, Fan G, Zong WX, Degenhardt K, White E, Gelinas C (2008) Bfl-1/A1 functions, similar to Mcl-1, as a selective tBid and Bak antagonist. Oncogene 27(10):1421–1428. doi: 10.1038/sj.onc.1210771 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DC (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315(5813):856–859CrossRefPubMedGoogle Scholar
  36. 36.
    Liu X, Dai S, Zhu Y, Marrack P, Kappler JW (2003) The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity 19(3):341–352CrossRefPubMedGoogle Scholar
  37. 37.
    Kvansakul M, Wei AH, Fletcher JI, Willis SN, Chen L, Roberts AW, Huang DC, Colman PM (2010) Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1. PLoS Pathog 6(12):e1001236. doi: 10.1371/journal.ppat.1001236 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lee EF, Czabotar PE, Smith BJ, Deshayes K, Zobel K, Colman PM, Fairlie WD (2007) Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ 14(9):1711–1713. doi: 10.1038/sj.cdd.4402178, 4402178 [pii]CrossRefPubMedGoogle Scholar
  39. 39.
    Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW (2000) Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 9(12):2528–2534. doi: 10.1110/ps.9.12.2528 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yan N, Gu L, Kokel D, Chai J, Li W, Han A, Chen L, Xue D, Shi Y (2004) Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell 15(6):999–1006CrossRefPubMedGoogle Scholar
  41. 41.
    Denisov AY, Chen G, Sprules T, Moldoveanu T, Beauparlant P, Gehring K (2006) Structural model of the BCL-w-BID peptide complex and its interactions with phospholipid micelles. Biochemistry 45(7):2250–2256. doi: 10.1021/bi052332s CrossRefPubMedGoogle Scholar
  42. 42.
    Kvansakul M, van Delft MF, Lee EF, Gulbis JM, Fairlie WD, Huang DC, Colman PM (2007) A structural viral mimic of prosurvival Bcl-2: a pivotal role for sequestering proapoptotic Bax and Bak. Mol Cell 25(6):933–942CrossRefPubMedGoogle Scholar
  43. 43.
    Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu HC, Kim H, Cheng EH, Tjandra N, Walensky LD (2008) BAX activation is initiated at a novel interaction site. Nature 455(7216):1076–1081. doi: 10.1038/nature07396, nature07396 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Feng W, Huang S, Wu H, Zhang M (2007) Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol 372(1):223–235. doi: 10.1016/j.jmb.2007.06.069 CrossRefPubMedGoogle Scholar
  45. 45.
    Herman MD, Nyman T, Welin M, Lehtio L, Flodin S, Tresaugues L, Kotenyova T, Flores A, Nordlund P (2008) Completing the family portrait of the anti-apoptotic Bcl-2 proteins: crystal structure of human Bfl-1 in complex with Bim. FEBS Lett 582(25-26):3590–3594. doi: 10.1016/j.febslet.2008.09.028 CrossRefPubMedGoogle Scholar
  46. 46.
    Ku B, Woo JS, Liang C, Lee KH, Hong HS, E X, Kim KS, Jung JU, Oh BH (2008) Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog 4(2):e25. doi: 10.1371/journal.ppat.0040025 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Smits C, Czabotar PE, Hinds MG, Day CL (2008) Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Structure 16(5):818–829. doi: 10.1016/j.str.2008.02.009 CrossRefPubMedGoogle Scholar
  48. 48.
    Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG (2008) Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J Mol Biol 380(5):958–971. doi: 10.1016/j.jmb.2008.05.071 CrossRefPubMedGoogle Scholar
  49. 49.
    Lee EF, Czabotar PE, van Delft MF, Michalak EM, Boyle MJ, Willis SN, Puthalakath H, Bouillet P, Colman PM, Huang DC, Fairlie WD (2008) A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. J Cell Biol 180(2):341–355. doi: 10.1083/jcb.200708096 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sinha S, Colbert CL, Becker N, Wei Y, Levine B (2008) Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy 4(8):989–997CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lee EF, Sadowsky JD, Smith BJ, Czabotar PE, Peterson-Kaufman KJ, Colman PM, Gellman SH, Fairlie WD (2009) High-resolution structural characterization of a helical alpha/beta-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. Angew Chem 48(24):4318–4322. doi: 10.1002/anie.200805761 CrossRefGoogle Scholar
  52. 52.
    Fire E, Gulla SV, Grant RA, Keating AE (2010) Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Protein Sci 19(3):507–519. doi: 10.1002/pro.329 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu Q, Moldoveanu T, Sprules T, Matta-Camacho E, Mansur-Azzam N, Gehring K (2010) Apoptotic regulation by MCL-1 through heterodimerization. J Biol Chem 285(25):19615–19624. doi: 10.1074/jbc.M110.105452 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Stewart ML, Fire E, Keating AE, Walensky LD (2010) The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 6(8):595–601. doi: 10.1038/nchembio.391 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Dutta S, Gulla S, Chen TS, Fire E, Grant RA, Keating AE (2010) Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J Mol Biol 398(5):747–762. doi: 10.1016/j.jmb.2010.03.058 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ku B, Liang C, Jung JU, Oh BH (2011) Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 21(4):627–641. doi: 10.1038/cr.2010.149 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM (2011) Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J Biol Chem 286(9):7123–7131. doi: 10.1074/jbc.M110.161281 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee EF, Clarke OB, Evangelista M, Feng Z, Speed TP, Tchoubrieva EB, Strasser A, Kalinna BH, Colman PM, Fairlie WD (2011) Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes. Proc Natl Acad Sci U S A 108(17):6999–7003. doi: 10.1073/pnas.1100652108, 1100652108 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ambrosi E, Capaldi S, Bovi M, Saccomani G, Perduca M, Monaco HL (2011) Structural changes in the BH3 domain of SOUL protein upon interaction with the anti-apoptotic protein Bcl-xL. Biochem J 438(2):291–301. doi: 10.1042/BJ20110257 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lee EF, Smith BJ, Horne WS, Mayer KN, Evangelista M, Colman PM, Gellman SH, Fairlie WD (2011) Structural basis of Bcl-xL recognition by a BH3-mimetic alpha/beta-peptide generated by sequence-based design. Chembiochem 12(13):2025–2032. doi: 10.1002/cbic.201100314 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ma J, Edlich F, Bermejo GA, Norris KL, Youle RJ, Tjandra N (2012) Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proc Natl Acad Sci U S A 109(51):20901–20906. doi: 10.1073/pnas.1217094110 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Boersma MD, Haase HS, Peterson-Kaufman KJ, Lee EF, Clarke OB, Colman PM, Smith BJ, Horne WS, Fairlie WD, Gellman SH (2012) Evaluation of diverse alpha/beta-backbone patterns for functional alpha-helix mimicry: analogues of the Bim BH3 domain. J Am Chem Soc 134(1):315–323. doi: 10.1021/ja207148m CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Smith BJ, Lee EF, Checco JW, Evangelista M, Gellman SH, Fairlie WD (2013) Structure-guided rational design of alpha/beta-peptide foldamers with high affinity for BCL-2 family prosurvival proteins. Chembiochem 14(13):1564–1572. doi: 10.1002/cbic.201300351 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Okamoto T, Zobel K, Fedorova A, Quan C, Yang H, Fairbrother WJ, Huang DC, Smith BJ, Deshayes K, Czabotar PE (2013) Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem Biol 8(2):297–302. doi: 10.1021/cb3005403 CrossRefPubMedGoogle Scholar
  65. 65.
    Follis AV, Chipuk JE, Fisher JC, Yun MK, Grace CR, Nourse A, Baran K, Ou L, Min L, White SW, Green DR, Kriwacki RW (2013) PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol 9(3):163–168. doi: 10.1038/nchembio.1166 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, Kriwacki RW, Green DR (2013) BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 20(5):589–597. doi: 10.1038/nsmb.2563, nsmb.2563CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, Garcia-Barrantes PM, Camper D, Chauder BA, Lee T, Olejniczak ET, Fesik SW (2013) Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56(1):15–30. doi: 10.1021/jm301448p CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lee EF, Dewson G, Evangelista M, Pettikiriarachchi A, Gold GJ, Zhu H, Colman PM, Fairlie WD (2014) The functional differences between pro-survival and pro-apoptotic B cell lymphoma 2 (Bcl-2) proteins depend on structural differences in their Bcl-2 homology 3 (BH3) domains. J Biol Chem 289(52):36001–36017. doi: 10.1074/jbc.M114.610758 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, Margineantu D, Booth G, Correia BE, Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard BL, Stayton PS, Baker D (2014) A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 157(7):1644–1656. doi: 10.1016/j.cell.2014.04.034 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Follis AV, Llambi F, Ou L, Baran K, Green DR, Kriwacki RW (2014) The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat Struct Mol Biol 21(6):535–543. doi: 10.1038/nsmb.2829 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Marshall B, Puthalakath H, Caria S, Chugh S, Doerflinger M, Colman PM, Kvansakul M (2015) Variola virus F1L is a Bcl-2-like protein that unlike its vaccinia virus counterpart inhibits apoptosis independent of Bim. Cell Death Dis 6:e1680. doi: 10.1038/cddis.2015.52 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Rajan S, Choi M, Baek K, Yoon HS (2015) Bh3 induced conformational changes in Bcl-X revealed by crystal structure and comparative analysis. Proteins. doi: 10.1002/prot.24816 PubMedGoogle Scholar
  73. 73.
    Kim JS, Ku B, Woo TG, Oh AY, Jung YS, Soh YM, Yeom JH, Lee K, Park BJ, Oh BH, Ha NC (2015) Conversion of cell-survival activity of Akt into apoptotic death of cancer cells by two mutations on the BIM BH3 domain. Cell Death Dis 6:e1804. doi: 10.1038/cddis.2015.118 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A, Martineau D, McClellan WJ, Mitten M, Ng SC, Nimmer PM, Oltersdorf T, Park CM, Petros AM, Shoemaker AR, Song X, Wang X, Wendt MD, Zhang H, Fesik SW, Rosenberg SH, Elmore SW (2007) Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J Med Chem 50(4):641–662. doi: 10.1021/jm061152t CrossRefPubMedGoogle Scholar
  75. 75.
    Porter J, Payne A, de Candole B, Ford D, Hutchinson B, Trevitt G, Turner J, Edwards C, Watkins C, Whitcombe I, Davis J, Stubberfield C (2009) Tetrahydroisoquinoline amide substituted phenyl pyrazoles as selective Bcl-2 inhibitors. Bioorg Med Chem Lett 19(1):230–233. doi: 10.1016/j.bmcl.2008.10.113 CrossRefPubMedGoogle Scholar
  76. 76.
    Sleebs BE, Czabotar PE, Fairbrother WJ, Fairlie WD, Flygare JA, Huang DC, Kersten WJ, Koehler MF, Lessene G, Lowes K, Parisot JP, Smith BJ, Smith ML, Souers AJ, Street IP, Yang H, Baell JB (2011) Quinazoline sulfonamides as dual binders of the proteins B-cell lymphoma 2 and B-cell lymphoma extra long with potent proapoptotic cell-based activity. J Med Chem 54(6):1914–1926. doi: 10.1021/jm101596e CrossRefPubMedGoogle Scholar
  77. 77.
    Perez HL, Banfi P, Bertrand J, Cai ZW, Grebinski JW, Kim K, Lippy J, Modugno M, Naglich J, Schmidt RJ, Tebben A, Vianello P, Wei DD, Zhang L, Galvani A, Lombardo LJ, Borzilleri RM (2012) Identification of a phenylacylsulfonamide series of dual Bcl-2/Bcl-xL antagonists. Bioorg Med Chem Lett 22(12):3946–3950. doi: 10.1016/j.bmcl.2012.04.103 CrossRefPubMedGoogle Scholar
  78. 78.
    Schroeder GM, Wei D, Banfi P, Cai ZW, Lippy J, Menichincheri M, Modugno M, Naglich J, Penhallow B, Perez HL, Sack J, Schmidt RJ, Tebben A, Yan C, Zhang L, Galvani A, Lombardo LJ, Borzilleri RM (2012) Pyrazole and pyrimidine phenylacylsulfonamides as dual Bcl-2/Bcl-xL antagonists. Bioorg Med Chem Lett 22(12):3951–3956. doi: 10.1016/j.bmcl.2012.04.106 CrossRefPubMedGoogle Scholar
  79. 79.
    Zhou H, Chen J, Meagher JL, Yang CY, Aguilar A, Liu L, Bai L, Cong X, Cai Q, Fang X, Stuckey JA, Wang S (2012) Design of Bcl-2 and Bcl-xL inhibitors with subnanomolar binding affinities based upon a new scaffold. J Med Chem 55(10):4664–4682. doi: 10.1021/jm300178u CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wysoczanski P, Mart RJ, Loveridge EJ, Williams C, Whittaker SB, Crump MP, Allemann RK (2012) NMR solution structure of a photoswitchable apoptosis activating Bak peptide bound to Bcl-xL. J Am Chem Soc 134(18):7644–7647. doi: 10.1021/ja302390a CrossRefPubMedGoogle Scholar
  81. 81.
    Muppidi A, Doi K, Edwardraja S, Drake EJ, Gulick AM, Wang HG, Lin Q (2012) Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J Am Chem Soc 134(36):14734–14737. doi: 10.1021/ja306864v CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Toure BB, Miller-Moslin K, Yusuff N, Perez L, Dore M, Joud C, Michael W, DiPietro L, van der Plas S, McEwan M, Lenoir F, Hoe M, Karki R, Springer C, Sullivan J, Levine K, Fiorilla C, Xie X, Kulathila R, Herlihy K, Porter D, Visser M (2013) The role of the acidity of N-heteroaryl sulfonamides as inhibitors of bcl-2 family protein-protein interactions. ACS Med Chem Lett 4(2):186–190. doi: 10.1021/ml300321d CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208. doi: 10.1038/nm.3048, nm.3048 [pii]CrossRefPubMedGoogle Scholar
  84. 84.
    Tanaka Y, Aikawa K, Nishida G, Homma M, Sogabe S, Igaki S, Hayano Y, Sameshima T, Miyahisa I, Kawamoto T, Tawada M, Imai Y, Inazuka M, Cho N, Imaeda Y, Ishikawa T (2013) Discovery of potent Mcl-1/Bcl-xL dual inhibitors by using a hybridization strategy based on structural analysis of target proteins. J Med Chem 56(23):9635–9645. doi: 10.1021/jm401170c CrossRefPubMedGoogle Scholar
  85. 85.
    Petros AM, Swann SL, Song D, Swinger K, Park C, Zhang H, Wendt MD, Kunzer AR, Souers AJ, Sun C (2014) Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg Med Chem Lett 24(6):1484–1488. doi: 10.1016/j.bmcl.2014.02.010 CrossRefPubMedGoogle Scholar
  86. 86.
    Schilling J, Schoppe J, Sauer E, Pluckthun A (2014) Co-crystallization with conformation-specific designed ankyrin repeat proteins explains the conformational flexibility of BCL-W. J Mol Biol 426(12):2346–2362. doi: 10.1016/j.jmb.2014.04.010 CrossRefPubMedGoogle Scholar
  87. 87.
    Koehler MF, Bergeron P, Choo EF, Lau K, Ndubaku C, Dudley D, Gibbons P, Sleebs BE, Rye CS, Nikolakopoulos G, Bui C, Kulasegaram S, Kersten WJ, Smith BJ, Czabotar PE, Colman PM, Huang DC, Baell JB, Watson KG, Hasvold L, Tao ZF, Wang L, Souers AJ, Elmore SW, Flygare JA, Fairbrother WJ, Lessene G (2014) Structure-guided rescaffolding of selective antagonists of BCL-XL. ACS Med Chem Lett 5(6):662–667. doi: 10.1021/ml500030p CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Fang C, D’Souza B, Thompson CF, Clifton MC, Fairman JW, Fulroth B, Leed A, McCarren P, Wang L, Wang Y, Feau C, Kaushik VK, Palmer M, Wei G, Golub TR, Hubbard BK, Serrano-Wu MH (2014) Single diastereomer of a macrolactam core binds specifically to myeloid cell leukemia 1 (MCL1). ACS Med Chem Lett 5(12):1308–1312. doi: 10.1021/ml500388q CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Burke JP, Bian Z, Shaw S, Zhao B, Goodwin CM, Belmar J, Browning CF, Vigil D, Friberg A, Camper DV, Rossanese OW, Lee T, Olejniczak ET, Fesik SW (2015) Discovery of tricyclic indoles that potently inhibit Mcl-1 using fragment-based methods and structure-based design. J Med Chem 58(9):3794–3805. doi: 10.1021/jm501984f CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourneAustralia
  2. 2.La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia
  3. 3.The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  4. 4.Department of Medical BiologyThe University of MelbourneMelbourneAustralia

Personalised recommendations