Introducing Machine Learning Concepts with WEKA

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1418)

Abstract

This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types of data mining problems, and provides suggestions about where to find additional information.

Key words

Machine learning Data mining WEKA Bioinformatics Tutorial 

References

  1. 1.
    Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Burlington, MAGoogle Scholar
  2. 2.
    Ross Quinlan J (1993) C 4.5: programs for machine learning. Morgan Kaufmann, San Mateo, CAGoogle Scholar
  3. 3.
    Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649CrossRefPubMedGoogle Scholar
  4. 4.
    Ramana J, Gupta D (2010) Machine learning methods for prediction of CDK-inhibitors. PLoS One 5(10):e13357CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Buchwald F, Richter L, Kramer S (2011) Predicting a small molecule- kinase interaction map: a machine learning approach. J Cheminform 3:22CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fürnkranz J (1999) Separate-and-conquer rule learning. Artif Intell Rev 13(1):3–54CrossRefGoogle Scholar
  7. 7.
    Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Learn 29(2-3):131–163CrossRefGoogle Scholar
  8. 8.
    Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29(2–3):103–130CrossRefGoogle Scholar
  9. 9.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297Google Scholar
  10. 10.
    Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(9):533–536CrossRefGoogle Scholar
  11. 11.
    Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13(1):21–27CrossRefGoogle Scholar
  12. 12.
    Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw 3(3):209–226CrossRefGoogle Scholar
  13. 13.
    Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140Google Scholar
  14. 14.
    Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. International conference on machine learning. Morgan Kaufmann, Bari, ItalyGoogle Scholar
  15. 15.
    Dietterich TG (2000) Ensemble methods in machine learning. Multiple classifier systems. Springer, Berlin, pp 1–15CrossRefGoogle Scholar
  16. 16.
    Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259CrossRefGoogle Scholar
  17. 17.
    Ting KM (1998) Inducing cost-sensitive trees via instance weighting. Principles of data mining and knowledge discovery. Springer, Berlin, pp 139–147CrossRefGoogle Scholar
  18. 18.
    Duda RO, Hart PE (1973) Pattern classification and scene analysis, vol 3. Wiley, New YorkGoogle Scholar
  19. 19.
    Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1):273–324CrossRefGoogle Scholar
  20. 20.
    Hartigan JA (1975) Clustering algorithms. Wiley, New YorkGoogle Scholar
  21. 21.
    Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254CrossRefPubMedGoogle Scholar
  22. 22.
    McLachlan GJ, Basford KE (1987) Mixture models: inference and applications to clustering. CRC, New YorkGoogle Scholar
  23. 23.
    Rakesh A, Srikant R (1994) Fast algorithms for mining association rules. International conference on very large databases. Morgan Kaufmann, Santiago de Chile, ChileGoogle Scholar
  24. 24.
    Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–314Google Scholar
  25. 25.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations