Statistical Genomics pp 335-351

Part of the Methods in Molecular Biology book series (MIMB, volume 1418) | Cite as

Visualizing Genomic Data Using Gviz and Bioconductor

Protocol

Abstract

The Gviz package offers a flexible framework to visualize genomic data in the context of a variety of different genome annotation features. Being tightly embedded in the Bioconductor genomics landscape, it nicely integrates with the existing infrastructure, but also provides direct data retrieval from external sources like Ensembl and UCSC and supports most of the commonly used annotation file types. Through carefully chosen default settings the package greatly facilitates the production of publication-ready figures of genomic loci, while still maintaining high flexibility due to its ample customization options.

Key words

Visualization Genomics NGS Annotation 

References

  1. 1.
    Lawrence M, Gentleman R, Carey V (2009) Rtracklayer: An r package for interfacing with genome browsers. Bioinformatics 25:1841–1842. doi:10.1093/bioinformatics/btp328 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Durinck S, Bullard J. GenomeGraphs: plotting genomic information from ensembl. R package version 1.30.0Google Scholar
  3. 3.
    Brooks AN, Yang L, Duff MO, Hansen KD, Park JW, Dudoit S, Brenner SE, Graveley BR (2011) Conservation of an rNA regulatory map between drosophila and mammals. Genome Res 21:193–202. doi:10.1101/gr.108662.110 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with rNA-seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ensembl (2011) Drosophila melanogaster genome version BDGP5.25.62Google Scholar
  6. 6.
    Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from rNA-seq data. Genome Res 22:2008–2017. doi:10.1101/gr.133744.111 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cunningham F, Amode MR, Barrell D, Beal K,Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Kähäri AK, Keenan S, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Overduin B, Parker A, Patricio M, Perry E, Pignatelli M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Aken BL, Birney E, Harrow J, Kinsella R, Muffato M, Ruffier M, Searle SM, Spudich G, Trevanion SJ, Yates A, Zerbino DR, Flicek P (2015) Ensembl 2015. Nucleic Acids Res 43:D662–D669. doi:10.1093/nar/gku1010 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at uCSC. Genome Res 12:996–1006. doi:10.1101/gr.229102 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotech 29:24–26CrossRefGoogle Scholar
  10. 10.
    Chang W (2015) Shiny: web application framework for rGoogle Scholar
  11. 11.
    Allaire J, Cheng J, Xie Y, McPherson J, Chang W, Allen J, Wickham H, Hyndman R (2015) Rmarkdown: dynamic documents for rGoogle Scholar
  12. 12.
    Leisch F (2002) Sweave: dynamic generation of statistical reports using literate data analysis. In: Härdle W, Rönz B (eds) Compstat. Physica-Verlag HD, Berlin, pp 575–580CrossRefGoogle Scholar
  13. 13.
    Xie Y (2014) Knitr: a comprehensive tool for reproducible research in R. In: Stodden V, Leisch F, Peng RD (eds) Implementing reproducible computational research. Chapman and Hall/CRC, Boca Raton. ISBN 978-1466561595Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Novartis Institute for Biomedical ResearchBaselSwitzerland
  2. 2.Department of BiomedicineUniversity of BaselBaselSwitzerland

Personalised recommendations