Functional Analysis of Metabolomics Data

  • Mónica Chagoyen
  • Javier López-Ibáñez
  • Florencio Pazos
Part of the Methods in Molecular Biology book series (MIMB, volume 1415)


Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is “annotation enrichment analysis,” also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.

Key words

Metabolomics Metabolic pathway Metabolite Functional enrichment Metabolism Bioinformatics 


  1. 1.
    Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6(17):4716–4723. doi: 10.1002/pmic.200600106 CrossRefPubMedGoogle Scholar
  2. 2.
    da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13. doi: 10.1093/nar/gkn923 CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chagoyen M, Pazos F (2013) Tools for the functional interpretation of metabolomic experiments. Brief Bioinform 14(6):737–744. doi: 10.1093/bib/bbs055 CrossRefPubMedGoogle Scholar
  4. 4.
    Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P (2011) iPath2.0: interactive pathway explorer. Nucleic Acids Res 39(Web Server Issue):W412–W415. doi: 10.1093/nar/gkr313 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205. doi: 10.1093/nar/gkt1076 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chagoyen M, Pazos F (2011) MBRole: enrichment analysis of metabolomic data. Bioinformatics 27(5):730–731. doi: 10.1093/bioinformatics/btr001 CrossRefPubMedGoogle Scholar
  7. 7.
    Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38(Web Server Issue):W71–W77. doi: 10.1093/nar/gkq329 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, Gonzalez-Beltran A, Sansone SA, Griffin JL, Steinbeck C (2013) MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41(Database Issue):D781–D786. doi: 10.1093/nar/gks1004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mónica Chagoyen
    • 1
  • Javier López-Ibáñez
    • 1
  • Florencio Pazos
    • 1
  1. 1.Computational Systems Biology Group (CNB-CSIC)MadridSpain

Personalised recommendations