Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39. doi:10.1038/nrd2399
CAS
CrossRef
PubMed
Google Scholar
Knudsen KE, Scher HI (2009) Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res 15(15):4792–4798. doi:10.1158/1078-0432.CCR-08-2660
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Baeumner AJ (2003) Biosensors for environmental pollutants and food contaminants. Anal Bioanal Chem 377(3):434–445. doi:10.1007/s00216-003-2158-9
CAS
CrossRef
PubMed
Google Scholar
Morin A, Kaufmann KW, Fortenberry C, Harp JM, Mizoue LS, Meiler J (2011) Computational design of an endo-1,4-beta-xylanase ligand binding site. Protein Eng Des Sel 24(6):503–516. doi:10.1093/protein/gzr006
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Morin A, Meiler J, Mizoue LS (2011) Computational design of protein-ligand interfaces: potential in therapeutic development. Trends Biotechnol 29(4):159–166. doi:10.1016/j.tibtech.2011.01.002
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Jackel C, Kast P, Hilvert D (2008) Protein design by directed evolution. Annu Rev Biophys 37:153–173. doi:10.1146/annurev.biophys.37.032807.125832
CAS
CrossRef
PubMed
Google Scholar
Nannemann DP, Birmingham WR, Scism RA, Bachmann BO (2011) Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis. Future Med Chem 3(7):809–819. doi:10.4155/fmc.11.48
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501(7466):212–216. doi:10.1038/nature12443
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Feldmeier K, Hocker B (2013) Computational protein design of ligand binding and catalysis. Curr Opin Chem Biol 17(6):929–933 doi: 10.1016/j.cbpa.2013.10.002
Google Scholar
Schueler-Furman O, Wang C, Bradley P, Misura K, Baker D (2005) Progress in modeling of protein structures and interactions. Science 310(5748):638–642. doi:10.1126/science.1112160
CAS
CrossRef
PubMed
Google Scholar
Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YE, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. doi:10.1016/B978-0-12-381270-4.00019-6
Google Scholar
Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic level accuracy. Science 302(5649):1364–1368 doi: 10.1126/science.1089427
Google Scholar
Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB, Montelione GT, Baker D (2012) Principles for designing ideal protein structures. Nature 491(7423):222–227. doi:10.1038/nature11600
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ashworth J, Taylor GK, Havranek JJ, Quadri SA, Stoddard BL, Baker D (2010) Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Nucleic Acids Res 38(16):5601–5608 doi: 10.1093/nar/gkq283
Google Scholar
Sammond DW, Bosch DE, Butterfoss GL, Purbeck C, Machius M, Siderovski DP, Kuhlman B (2011) Computational design of the sequence and structure of a protein-binding peptide. J Am Chem Soc 133(12):4190–4192. doi:10.1021/ja110296z
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch EM, Wilson IA, Baker D (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332(6031):816–821. doi:10.1126/science.1202617
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF 3rd, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391. doi:10.1126/science.1152692
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–195. doi:10.1038/nature06879
CrossRef
PubMed
Google Scholar
Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329(5989):309–313. doi:10.1126/science.1190239
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Allison B, Combs S, DeLuca S, Lemmon G, Mizoue L, Meiler J (2014) Computational design of protein-small molecule interfaces. J Struct Biol 185(2):193–202. doi:10.1016/j.jsb.2013.08.003
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fleishman SJ, Leaver-Fay A, Corn JE, Strauch EM, Khare SD, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D (2011) RosettaScripts: a scripting language interface to the rosetta macromolecular modeling suite. PLoS One 6(6):20161. doi:10.1371/journal.pone.0020161
Google Scholar
Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65(3):538–548. doi:10.1002/prot.21086
CAS
CrossRef
PubMed
Google Scholar
Davis IW, Baker D (2009) RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385(2):381–392. doi:10.1016/j.jmb.2008.11.010
CAS
CrossRef
PubMed
Google Scholar
Lemmon G, Meiler J (2012) Rosetta Ligand docking with flexible XML protocols. Methods Mol Biol 819:143–155. doi:10.1007/978-1-61779-465-0_10
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
DeLuca S, Khar K, Meiler J (2015) Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand. PLoS One 10(7):e0132508. doi: 10.1371/journal.pone.0132508
Google Scholar
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. doi:10.1186/1758-2946-3-33
CrossRef
PubMed
PubMed Central
Google Scholar
Kothiwale S, Mendenhall JL, Meiler J (2015) BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library. J Cheminform 7:47. doi: 10.1186/s13321-015-0095-1
Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58(Pt 3 Pt 1):380–388 doi: 10.1107/S0108768102003890
Google Scholar
Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 50(4):572–584. doi:10.1021/ci100031x
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Labute P (2010) LowModeMD--implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50(5):792–800. doi:10.1021/ci900508k
CAS
CrossRef
PubMed
Google Scholar
Ebejer JP, Morris GM, Deane CM (2012) Freely available conformer generation methods: how good are they? J Chem Inf Model 52(5):1146–1158. doi:10.1021/ci2004658
CAS
CrossRef
PubMed
Google Scholar
Nivon LG, Moretti R, Baker D (2013) A Pareto-optimal refinement method for protein design scaffolds. PLoS One 8(4), e59004. doi:10.1371/journal.pone.0059004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084
CAS
CrossRef
PubMed
Google Scholar
Sheffler W, Baker D (2009) RosettaHoles: rapid assessment of protein core packing for structure prediction, refinement, design, and validation. Protein Sci 18(1):229–239. doi:10.1002/pro.8
CAS
PubMed
PubMed Central
Google Scholar
Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234(4):946–950. doi:10.1006/jmbi.1993.1648
CAS
CrossRef
PubMed
Google Scholar
Stranges PB, Kuhlman B (2013) A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci 22(1):74–82. doi:10.1002/pro.2187
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Nivon LG, Bjelic S, King C, Baker D (2014) Automating human intuition for protein design. Proteins 82(5):858–866. doi:10.1002/prot.24463
CAS
CrossRef
PubMed
Google Scholar
Combs SA, Deluca SL, Deluca SH, Lemmon GH, Nannemann DP, Nguyen ED, Willis JR, Sheehan JH, Meiler J (2013) Small-molecule ligand docking into comparative models with Rosetta. Nat Protoc 8(7):1277–1298. doi:10.1038/nprot.2013.074
CAS
CrossRef
PubMed
Google Scholar
Song Y, DiMaio F, Wang RY, Kim D, Miles C, Brunette T, Thompson J, Baker D (2013) High-resolution comparative modeling with RosettaCM. Structure 21(10):1735–1742. doi:10.1016/j.str.2013.08.005
CAS
CrossRef
PubMed
Google Scholar
Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA, Rothlisberger D, Baker D (2006) New algorithms and an in silico benchmark for computational enzyme design. Protein Sci 15(12):2785–2794. doi:10.1110/ps.062353106
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Henrich S, Salo-Ahen OM, Huang B, Rippmann FF, Cruciani G, Wade RC (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23(2):209–219. doi:10.1002/jmr.984
CAS
PubMed
Google Scholar
Lemmon G, Meiler J (2013) Towards ligand docking including explicit interface water molecules. PLoS One 8(6), e67536. doi:10.1371/journal.pone.0067536
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. doi:10.1101/gr.849004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
DeLano WL (2007) The PyMOL Molecular Graphics System 1.0 edn. DeLano Scientific LLC, Palo Alto, CA, USA
Google Scholar