Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers

  • Lim Heo
  • Hasup Lee
  • Minkyung Baek
  • Chaok Seok
Part of the Methods in Molecular Biology book series (MIMB, volume 1414)


We introduce two GALAXY web servers called GalaxySite and GalaxyPepDock that predict protein complex structures with small organic compounds and peptides, respectively. GalaxySite predicts ligands that may bind the input protein and generates complex structures of the protein with the predicted ligands from the protein structure given as input or predicted from the input sequence. GalaxyPepDock takes a protein structure and a peptide sequence as input and predicts structures for the protein–peptide complex. Both GalaxySite and GalaxyPepDock rely on available experimentally resolved structures of protein–ligand complexes evolutionarily related to the target. With the continuously increasing size of the protein structure database, the probability of finding related proteins in the database is increasing. The servers further relax the complex structures to refine the structural aspects that are missing in the available structures or that are not compatible with the given protein by optimizing physicochemical interactions. GalaxyPepDock allows conformational change of the protein receptor induced by peptide binding. The atomistic interactions with ligands predicted by the GALAXY servers may offer important clues for designing new molecules or proteins with desired binding properties.

Key words

GALAXY Binding site prediction Peptide docking Ligand docking Ligand design 



This work was supported by the National Research Foundation of Korea grants funded by the Ministry of Science, ICT & Future Planning (No. 2013R1A2A1A09012229).


  1. 1.
    Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103(1):21–80. doi: 10.1016/j.pharmthera.2004.05.002 CrossRefPubMedGoogle Scholar
  2. 2.
    Negri A, Rodriguez-Larrea D, Marco E, Jimenez-Ruiz A, Sanchez-Ruiz JM, Gago F (2010) Protein-protein interactions at an enzyme-substrate interface: characterization of transient reaction intermediates throughout a full catalytic cycle of Escherichia coli thioredoxin reductase. Proteins 78(1):36–51. doi: 10.1002/prot.22490 CrossRefPubMedGoogle Scholar
  3. 3.
    Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14(9):1027–1047PubMedGoogle Scholar
  4. 4.
    Campbell SJ, Gold ND, Jackson RM, Westhead DR (2003) Ligand binding: functional site location, similarity and docking. Curr Opin Struct Biol 13(3):389–395CrossRefPubMedGoogle Scholar
  5. 5.
    Kinoshita K, Nakamura H (2003) Protein informatics towards function identification. Curr Opin Struct Biol 13(3):396–400CrossRefPubMedGoogle Scholar
  6. 6.
    Laurie AT, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7(5):395–406CrossRefPubMedGoogle Scholar
  7. 7.
    Sotriffer C, Klebe G (2002) Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. Farmaco 57(3):243–251CrossRefPubMedGoogle Scholar
  8. 8.
    Damborsky J, Brezovsky J (2014) Computational tools for designing and engineering enzymes. Curr Opin Chem Biol 19:8–16. doi: 10.1016/j.cbpa.2013.12.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Feldmeier K, Hocker B (2013) Computational protein design of ligand binding and catalysis. Curr Opin Chem Biol 17(6):929–933CrossRefPubMedGoogle Scholar
  10. 10.
    Tripathi A, Kellogg GE (2010) A novel and efficient tool for locating and characterizing protein cavities and binding sites. Proteins 78(4):825–842. doi: 10.1002/prot.22608 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lopez G, Ezkurdia I, Tress ML (2009) Assessment of ligand binding residue predictions in CASP8. Proteins 77(Suppl 9):138–146. doi: 10.1002/prot.22557 CrossRefPubMedGoogle Scholar
  12. 12.
    Lopez G, Rojas A, Tress M, Valencia A (2007) Assessment of predictions submitted for the CASP7 function prediction category. Proteins 69(Suppl 8):165–174. doi: 10.1002/prot.21651 CrossRefPubMedGoogle Scholar
  13. 13.
    Oh M, Joo K, Lee J (2009) Protein-binding site prediction based on three-dimensional protein modeling. Proteins 77(Suppl 9):152–156. doi: 10.1002/prot.22572 CrossRefPubMedGoogle Scholar
  14. 14.
    Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40(Web Server Issue):W294–W297. doi: 10.1093/nar/gks493 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Heo L, Shin WH, Lee MS, Seok C (2014) GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Res 42(Web Server Issue):W210–W214. doi: 10.1093/nar/gku321 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gallo Cassarino T, Bordoli L, Schwede T (2014) Assessment of ligand binding site predictions in CASP10. Proteins 82(Suppl 2):154–163. doi: 10.1002/prot.24495 CrossRefPubMedGoogle Scholar
  17. 17.
    Schmidt T, Haas J, Gallo Cassarino T, Schwede T (2011) Assessment of ligand-binding residue predictions in CASP9. Proteins 79(Suppl 10):126–136. doi: 10.1002/prot.23174 CrossRefPubMedGoogle Scholar
  18. 18.
    Lee H, Heo L, Lee MS, Seok C (2015) GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res. doi: 10.1093/nar/gkv495 Google Scholar
  19. 19.
    Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81(12):2082–2095. doi: 10.1002/prot.24428 CrossRefPubMedGoogle Scholar
  20. 20.
    Ko J, Park H, Seok C (2012) GalaxyTBM: template-based modeling by building a reliable core and refining unreliable local regions. BMC Bioinformatics 13:198. doi: 10.1186/1471-2105-13-198 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542CrossRefPubMedGoogle Scholar
  22. 22.
    Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309. doi: 10.1093/nar/gki524 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18(2):188–199. doi: 10.1016/j.str.2009.11.012 CrossRefPubMedGoogle Scholar
  25. 25.
    Saladin A, Rey J, Thevenet P, Zacharias M, Moroy G, Tuffery P (2014) PEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces. Nucleic Acids Res 42(Web Server issue):W221–226. doi: 10.1093/nar/gku404 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistrySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations