Modeling of Protein–RNA Complex Structures Using Computational Docking Methods

  • Bharat Madan
  • Joanna M. Kasprzak
  • Irina Tuszynska
  • Marcin Magnus
  • Krzysztof Szczepaniak
  • Wayne K. Dawson
  • Janusz M. Bujnicki
Part of the Methods in Molecular Biology book series (MIMB, volume 1414)


A significant part of biology involves the formation of RNA–protein complexes. X-ray crystallography has added a few solved RNA–protein complexes to the repertoire; however, it remains challenging to capture these complexes and often only the unbound structures are available. This has inspired a growing interest in finding ways to predict these RNA–protein complexes. In this study, we show ways to approach this problem by computational docking methods, either with a fully automated NPDock server or with a workflow of methods for generation of many alternative structures followed by selection of the most likely solution. We show that by introducing experimental information, the structure of the bound complex is rendered far more likely to be within reach. This study is meant to help the user of docking software understand how to grapple with a typical realistic problem in RNA–protein docking, understand what to expect in the way of difficulties, and recognize the current limitations.

Key words

Protein–RNA docking NPDock Molecular modeling Macromolecular complexes Structural bioinformatics Statistical potential 



This work was supported by the European Commission (E.C. REGPOT grant FishMed, contract number 316125, to Jacek Kuźnicki in IIMCB) and by the European Research Council (ERC, StG grant RNA + P = 123D grant to J.M.B). J.M.B was also supported by the “Ideas for Poland” fellowship from the Foundation for Polish Science. J.M.K., I.T., and M.M. were additionally supported by the Polish National Science Center (NCN, grants 2012/05/N/NZ2/01652 to J.M.K., 2011/03/N/NZ2/03241 to I.T., and 2014/12/T/NZ2/00501 to M.M.). The development and maintenance of computational servers was funded by the E.C. structural funds (grant POIG.02.03.00–00–003/09 to J.M.B.). Calculations were performed on a high-performance computing cluster at IIMCB, Warsaw (supported by IIMCB statutory funds). The authors are grateful to Stanisław Dunin-Horkawicz and Michał Boniecki for useful discussions and comments on the manuscript.


  1. 1.
    Moller W, Amons R, Groene JC, Garrett RA, Terhorst CP (1969) Protein-ribonucleic acid interactions in ribosomes. Biochim Biophys Acta 190(2):381–390CrossRefPubMedGoogle Scholar
  2. 2.
    Demeshkina N, Jenner L, Yusupova G, Yusupov M (2010) Interactions of the ribosome with mRNA and tRNA. Curr Opin Struct Biol 20(3):325–332. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  3. 3.
    Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108, nrg2504 (pii)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pichon C, Felden B (2007) Proteins that interact with bacterial small RNA regulators. FEMS Microbiol Rev 31(5):614–625, FMR079 (pii)CrossRefPubMedGoogle Scholar
  5. 5.
    Hoskins AA, Moore MJ (2012) The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 37(5):179–188. doi: 10.1016/j.tibs.2012.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Doudna JA (2000) Structural genomics of RNA. Nat Struct Biol 7(Suppl):954–956CrossRefPubMedGoogle Scholar
  7. 7.
    Ke A, Doudna JA (2004) Crystallization of RNA and RNA-protein complexes. Methods 34(3):408–414CrossRefPubMedGoogle Scholar
  8. 8.
    Tuszynska I, Matelska D, Magnus M, Chojnowski G, Kasprzak JM, Kozlowski LP, Dunin-Horkawicz S, Bujnicki JM (2014) Computational modeling of protein-RNA complex structures. Methods 65(3):310–319. doi: 10.1016/j.ymeth.2013.09.014 CrossRefPubMedGoogle Scholar
  9. 9.
    Whitford PC, Ahmed A, Yu Y, Hennelly SP, Tama F, Spahn CM, Onuchic JN, Sanbonmatsu KY (2011) Excited states of ribosome translocation revealed through integrative molecular modeling. Proc Natl Acad Sci U S A 108(47):18943–18948. doi: 10.1073/pnas.1108363108 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gan HH, Gunsalus KC (2013) Tertiary structure-based analysis of microRNA-target interactions. RNA 19:539. doi: 10.1261/rna.035691.112 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Anokhina M, Bessonov S, Miao Z, Westhof E, Hartmuth K, Luhrmann R (2013) RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J 32(21):2804–2818. doi: 10.1038/emboj.2013.198 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cheng LT, Wang Z, Setny P, Dzubiella J, Li B, McCammon JA (2009) Interfaces and hydrophobic interactions in receptor-ligand systems: a level-set variational implicit solvent approach. J Chem Phys 131(14):144102. doi: 10.1063/1.3242274 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hoang C, Ferre-D’Amare AR (2001) Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107(7):929–939CrossRefPubMedGoogle Scholar
  14. 14.
    Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science 252(5013):1682–1689CrossRefPubMedGoogle Scholar
  15. 15.
    Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell DS, Westbrook JD, Woo J, Young J, Zardecki C, Berman HM, Bourne PE, Burley SK (2015) The RCSB protein data bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43(Database issue):D345–D356. doi: 10.1093/nar/gku1214 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sauter C, Lorber B, Cavarelli J, Moras D, Giege R (2000) The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. J Mol Biol 299(5):1313–1324CrossRefPubMedGoogle Scholar
  17. 17.
    Westhof E, Dumas P, Moras D (1988) Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A 44(Pt 2):112–123CrossRefPubMedGoogle Scholar
  18. 18.
    Rother M, Rother K, Puton T, Bujnicki JM (2011) ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 39(10):4007–4022. doi: 10.1093/nar/gkq1320 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–1423CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rother M, Milanowska K, Puton T, Jeleniewicz J, Rother K, Bujnicki JM (2011) ModeRNA server: an online tool for modeling RNA 3D structures. Bioinformatics 27(17):2441–2442CrossRefPubMedGoogle Scholar
  21. 21.
    Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89(6):2195–2199CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gajda MJ, Tuszynska I, Kaczor M, Bakulina AY, Bujnicki JM (2010) FILTREST3D: discrimination of structural models using restraints from experimental data. Bioinformatics 26(23):2986–2987, btq582 (pii)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23(4):566–579CrossRefPubMedGoogle Scholar
  24. 24.
    Tuszynska I, Bujnicki JM (2011) DARS-RNP and QUASI-RNP: new statistical potentials for protein-RNA docking. BMC Bioinform 12(1):348, 1471-2105-12-348 (pii)CrossRefGoogle Scholar
  25. 25.
    Tuszynska I, Magnus M, Jonak K, Dawson W, Bujnicki JM (2015) NPDock: a web server for protein-nucleic acid docking. Nucleic Acids Res 43:W425. doi: 10.1093/nar/gkv493 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    The PyMOL Molecular Graphics System. The PyMOL Molecular Graphics System, vol Version Schrödinger, LLC.Google Scholar
  27. 27.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRefPubMedGoogle Scholar
  28. 28.
    Shortle D, Simons KT, Baker D (1998) Clustering of low-energy conformations near the native structures of small proteins. Proc Natl Acad Sci U S A 95(19):11158–11162CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ditzler MA, Otyepka M, Sponer J, Walter NG (2010) Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Acc Chem Res 43(1):40–47. doi: 10.1021/ar900093g CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Estarellas C, Otyepka M, Koča J, Banáš P, Krepl M, Šponer J (2015) Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochim Biophys Acta 1850:1072–1090. doi: 10.1016/j.bbagen.2014.10.021 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bharat Madan
    • 1
  • Joanna M. Kasprzak
    • 1
    • 2
  • Irina Tuszynska
    • 1
    • 3
  • Marcin Magnus
    • 1
  • Krzysztof Szczepaniak
    • 1
  • Wayne K. Dawson
    • 1
  • Janusz M. Bujnicki
    • 1
    • 2
  1. 1.Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
  2. 2.Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
  3. 3.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations