Computational Reprogramming of T Cell Antigen Receptor Binding Properties

  • Timothy P. Riley
  • Nishant K. Singh
  • Brian G. Pierce
  • Brian M. Baker
  • Zhiping Weng
Part of the Methods in Molecular Biology book series (MIMB, volume 1414)

Abstract

T-cell receptor (TCR) binding to peptide/MHC is key to antigen-specific cellular immunity, and there has been considerable interest in modulating TCR affinity and specificity for the development of therapeutics and imaging reagents. While in vitro engineering efforts using molecular evolution have yielded remarkable improvements in TCR affinity, such approaches do not offer structural control and can adversely affect receptor specificity, particularly if the attraction towards the MHC is enhanced independently of the peptide. Here we describe an approach to computational design that begins with structural information and offers the potential for more controlled manipulation of binding properties. Our design process models point mutations in selected regions of the TCR and ranks the resulting change in binding energy. Consideration is given to designing optimized scoring functions tuned to particular TCR-peptide/MHC interfaces. Validation of highly ranked predictions can be used to refine the modeling methodology and scoring functions, improving the design process. Our approach results in a strong correlation between predicted and measured changes in binding energy, as well as good agreement between modeled and experimental structures.

Key words

T cell receptor Structure-guided design Rosetta Binding 

References

  1. 1.
    Aleksic M, Dushek O, Zhang H et al (2010) Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32:163–174CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stone JD, Kranz DM (2013) Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol 4:244CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Holler PD, Holman PO, Shusta EV et al (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97:5387–5392CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chlewicki LK, Holler PD, Monti BC et al (2005) High-affinity, peptide-specific T cell receptors can be generated by mutations in CDR1, CDR2 or CDR3. J Mol Biol 346:223–239CrossRefPubMedGoogle Scholar
  5. 5.
    Li Y, Moysey R, Molloy PE et al (2005) Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 23:349–354CrossRefPubMedGoogle Scholar
  6. 6.
    Varela-Rohena A, Molloy PE, Dunn SM et al (2008) Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 14:1390–1395CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhao Y, Bennett AD, Zheng Z et al (2007) High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J Immunol 179:5845–5854CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liddy N, Bossi G, Adams KJ et al (2012) Monoclonal TCR-redirected tumor cell killing. Nat Med 18:980–987CrossRefPubMedGoogle Scholar
  10. 10.
    Michielin O (2007) Application of molecular modeling to new therapeutic cancer approaches. Bull Cancer 94:763–768PubMedGoogle Scholar
  11. 11.
    Haidar JN, Pierce B, Yu Y et al (2009) Structure‐based design of a T‐cell receptor leads to nearly 100‐fold improvement in binding affinity for pepMHC. Proteins 74:948–960CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Malecek K, Grigoryan A, Zhong S et al (2014) Specific increase in potency via structure-based design of a TCR. J Immunol 193:2587–2599CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pierce BG, Hellman LM, Hossain M et al (2014) Computational design of the affinity and specificity of a therapeutic T cell receptor. PLoS Comput Biol 10:e1003478CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Piepenbrink KH, Blevins SJ, Scott DR et al (2013) The basis for limited specificity and MHC restriction in a T cell receptor interface. Nat Commun 4:1948CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaufmann KW, Lemmon GH, Deluca SL et al (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49:2987–2998CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Borbulevych OY, Santhanagopolan SM, Hossain M et al (2011) TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J Immunol 187:2453–2463CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scott DR, Borbulevych OY, Piepenbrink KH et al (2011) Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism. J Mol Biol 414:385–400CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Adams J, Narayanan S, Liu B et al (2011) T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35:681–693CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Burrows SR, Chen Z, Archbold JK et al (2010) Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proc Natl Acad Sci 107:10608–10613CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Borbulevych OY, Piepenbrink KH, Gloor BE et al (2009) T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity 31:885–896CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sammond DW, Eletr ZM, Purbeck C et al (2007) Structure-based protocol for identifying mutations that enhance protein–protein binding affinities. J Mol Biol 371:1392–1404CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26:689–691CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Leaver-Fay A, O’meara MJ, Tyka M et al (2013) Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol 523:109CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Giudicelli V, Duroux P, Ginestoux C et al (2006) IMGT/LIGM-DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res 34:D781–D784CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kellogg EH, Leaver‐Fay A, Baker D (2011) Role of conformational sampling in computing mutation‐induced changes in protein structure and stability. Proteins 79:830–838CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Timothy P. Riley
    • 1
    • 2
  • Nishant K. Singh
    • 1
    • 2
  • Brian G. Pierce
    • 3
  • Brian M. Baker
    • 1
    • 2
  • Zhiping Weng
    • 4
  1. 1.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  2. 2.Harper Cancer Research InstituteUniversity of Notre DameNotre DameUSA
  3. 3.Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleUSA
  4. 4.Program in Bioinformatics and Integrative BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations