Atypical Inflammasomes

  • Ann M. Janowski
  • Fayyaz S. SutterwalaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1417)


Pattern recognition receptors, including members of the NLR and PYHIN families, are essential for recognition of both pathogen- and host-derived danger signals. A number of molecules in these families are capable of forming multiprotein complexes termed inflammasomes that result in the activation of caspase-1. In addition to NLRP1, NLRP3, NLRC4, and AIM2, which form well-described inflammasome complexes, IFI16, NLRP6, NLRP7, NLRP12, and NLRC5 have also been proposed to form inflammasomes under specific conditions. The structure and function of these atypical inflammasomes will be highlighted here.

Key words

NLR Caspase-1 Inflammasome 



NIH grants R01 AI087630 (F.S.S.) and T32 AI007485 (A.M.J.) supported this work.


  1. 1.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. doi: 10.1016/j.cell.2010.01.040 PubMedCrossRefGoogle Scholar
  2. 2.
    Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243(1):109–118. doi: 10.1111/j.1600-065X.2011.01053.x PubMedCrossRefGoogle Scholar
  3. 3.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513. doi: 10.1038/nature07710 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnemri ES (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393. doi: 10.1038/ni.1859 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O’Rourke K, Chan S, Dong J, Qu Y, Roose-Girma M, Dixit VM, Monack DM (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A 107(21):9771–9776. doi: 10.1073/pnas.1003738107 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402. doi: 10.1038/ni.1864 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ludlow LE, Johnstone RW, Clarke CJ (2005) The HIN-200 family: more than interferon-inducible genes? Exp Cell Res 308(1):1–17. doi: 10.1016/j.yexcr.2005.03.032 PubMedCrossRefGoogle Scholar
  8. 8.
    Dawson MJ, Elwood NJ, Johnstone RW, Trapani JA (1998) The IFN-inducible nucleoprotein IFI 16 is expressed in cells of the monocyte lineage, but is rapidly and markedly down-regulated in other myeloid precursor populations. J Leukoc Biol 64(4):546–554PubMedGoogle Scholar
  9. 9.
    Gariglio M, Azzimonti B, Pagano M, Palestro G, De Andrea M, Valente G, Voglino G, Navino L, Landolfo S (2002) Immunohistochemical expression analysis of the human interferon-inducible gene IFI16, a member of the HIN200 family, not restricted to hematopoietic cells. J Interferon Cytokine Res 22(7):815–821. doi: 10.1089/107999002320271413 PubMedCrossRefGoogle Scholar
  10. 10.
    Wei W, Clarke CJ, Somers GR, Cresswell KS, Loveland KA, Trapani JA, Johnstone RW (2003) Expression of IFI 16 in epithelial cells and lymphoid tissues. Histochem Cell Biol 119(1):45–54. doi: 10.1007/s00418-002-0485-0 PubMedGoogle Scholar
  11. 11.
    Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9(5):363–375. doi: 10.1016/j.chom.2011.04.008 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11(11):997–1004. doi: 10.1038/ni.1932 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792. doi: 10.1038/nature08476 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24(1):93–103. doi: 10.1016/j.immuni.2005.12.003 PubMedCrossRefGoogle Scholar
  15. 15.
    Ting JP, Davis BK (2005) CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23:387–414. doi: 10.1146/annurev.immunol.23.021704.115616 PubMedCrossRefGoogle Scholar
  16. 16.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265. doi: 10.1146/annurev.immunol.021908.132715 PubMedCrossRefGoogle Scholar
  17. 17.
    Ye Z, Ting JP (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20(1):3–9. doi: 10.1016/j.coi.2008.01.003 PubMedCrossRefGoogle Scholar
  18. 18.
    Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R, Carlson A, Merriam S, Lora JM, Briskin M, DiStefano PS, Bertin J (2002) Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 530(1–3):73–78PubMedCrossRefGoogle Scholar
  19. 19.
    Normand S, Delanoye-Crespin A, Bressenot A, Huot L, Grandjean T, Peyrin-Biroulet L, Lemoine Y, Hot D, Chamaillard M (2011) Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci U S A 108(23):9601–9606. doi: 10.1073/pnas.1100981108 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M, Kanneganti TD (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488(7411):389–393. doi: 10.1038/nature11250 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chen GY, Liu M, Wang F, Bertin J, Nunez G (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186(12):7187–7194. doi: 10.4049/jimmunol.1100412 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145(5):745–757. doi: 10.1016/j.cell.2011.04.022 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, Frankel G, Levy M, Katz MN, Philbrick WM, Elinav E, Finlay BB, Flavell RA (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156(5):1045–1059. doi: 10.1016/j.cell.2014.01.026 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36(3):464–476. doi: 10.1016/j.immuni.2012.02.001 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kinoshita T, Wang Y, Hasegawa M, Imamura R, Suda T (2005) PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1beta secretion. J Biol Chem 280(23):21720–21725. doi: 10.1074/jbc.M410057200 PubMedCrossRefGoogle Scholar
  26. 26.
    Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, Kircheisen R, Ao A, Ratti B, Hanash S, Rouleau GA, Slim R (2006) Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 38(3):300–302. doi: 10.1038/ng1740 PubMedCrossRefGoogle Scholar
  27. 27.
    Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4(2):95–104. doi: 10.1038/nrm1019 PubMedCrossRefGoogle Scholar
  28. 28.
    Messaed C, Akoury E, Djuric U, Zeng J, Saleh M, Gilbert L, Seoud M, Qureshi S, Slim R (2011) NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J Biol Chem 286(50):43313–43323. doi: 10.1074/jbc.M111.306191 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Okada K, Hirota E, Mizutani Y, Fujioka T, Shuin T, Miki T, Nakamura Y, Katagiri T (2004) Oncogenic role of NALP7 in testicular seminomas. Cancer Sci 95(12):949–954PubMedCrossRefGoogle Scholar
  30. 30.
    Wang CM, Dixon PH, Decordova S, Hodges MD, Sebire NJ, Ozalp S, Fallahian M, Sensi A, Ashrafi F, Repiska V, Zhao J, Xiang Y, Savage PM, Seckl MJ, Fisher RA (2009) Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine-rich region. J Med Genet 46(8):569–575. doi: 10.1136/jmg.2008.064196 PubMedCrossRefGoogle Scholar
  31. 31.
    Grimes DA (1984) Epidemiology of gestational trophoblastic disease. Am J Obstet Gynecol 150(3):309–318PubMedCrossRefGoogle Scholar
  32. 32.
    Savage P, Williams J, Wong SL, Short D, Casalboni S, Catalano K, Seckl M (2010) The demographics of molar pregnancies in England and Wales from 2000–2009. J Reprod Med 55(7–8):341–345PubMedGoogle Scholar
  33. 33.
    Berkowitz RS, Goldstein DP (2009) Clinical practice. Molar pregnancy. N Engl J Med 360(16):1639–1645. doi: 10.1056/NEJMcp0900696 PubMedCrossRefGoogle Scholar
  34. 34.
    Kou YC, Shao L, Peng HH, Rosetta R, del Gaudio D, Wagner AF, Al-Hussaini TK, Van den Veyver IB (2008) A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod 14(1):33–40. doi: 10.1093/molehr/gam079 PubMedCrossRefGoogle Scholar
  35. 35.
    Qian J, Deveault C, Bagga R, Xie X, Slim R (2007) Women heterozygous for NALP7/NLRP7 mutations are at risk for reproductive wastage: report of two novel mutations. Hum Mutat 28(7):741. doi: 10.1002/humu.9498 PubMedCrossRefGoogle Scholar
  36. 36.
    Van Gorp H, Kuchmiy A, Van Hauwermeiren F, Lamkanfi M (2014) NOD-like receptors interfacing the immune and reproductive systems. FEBS J 281(20):4568–4582. doi: 10.1111/febs.13014 PubMedCrossRefGoogle Scholar
  37. 37.
    Pinheiro AS, Eibl C, Ekman-Vural Z, Schwarzenbacher R, Peti W (2011) The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol 413(4):790–803. doi: 10.1016/j.jmb.2011.09.024 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wang L, Manji GA, Grenier JM, Al-Garawi A, Merriam S, Lora JM, Geddes BJ, Briskin M, DiStefano PS, Bertin J (2002) PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 277(33):29874–29880. doi: 10.1074/jbc.M203915200 PubMedCrossRefGoogle Scholar
  39. 39.
    Williams KL, Lich JD, Duncan JA, Reed W, Rallabhandi P, Moore C, Kurtz S, Coffield VM, Accavitti-Loper MA, Su L, Vogel SN, Braunstein M, Ting JP (2005) The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem 280(48):39914–39924. doi: 10.1074/jbc.M502820200 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK, Taxman DJ, Ting JP (2007) Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol 178(3):1256–1260PubMedCrossRefGoogle Scholar
  41. 41.
    Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH, Jobin C, Rogers AB, Ting JP (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36(5):742–754. doi: 10.1016/j.immuni.2012.03.012 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zaki MH, Vogel P, Malireddi RK, Body-Malapel M, Anand PK, Bertin J, Green DR, Lamkanfi M, Kanneganti TD (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20(5):649–660. doi: 10.1016/j.ccr.2011.10.022 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37(1):96–107. doi: 10.1016/j.immuni.2012.07.006 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Allen IC, McElvania-Tekippe E, Wilson JE, Lich JD, Arthur JC, Sullivan JT, Braunstein M, Ting JP (2013) Characterization of NLRP12 during the in vivo host immune response to Klebsiella pneumoniae and Mycobacterium tuberculosis. PLoS One 8(4), e60842. doi: 10.1371/journal.pone.0060842 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zaki MH, Man SM, Vogel P, Lamkanfi M, Kanneganti TD (2014) Salmonella exploits NLRP12-dependent innate immune signaling to suppress host defenses during infection. Proc Natl Acad Sci U S A 111(1):385–390. doi: 10.1073/pnas.1317643111 PubMedCrossRefGoogle Scholar
  46. 46.
    Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587. doi: 10.1126/science.1084677 PubMedCrossRefGoogle Scholar
  47. 47.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872. doi: 10.1074/jbc.C200651200 PubMedCrossRefGoogle Scholar
  48. 48.
    Strober W, Murray PJ, Kitani A, Watanabe T (2006) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6(1):9–20. doi: 10.1038/nri1747 PubMedCrossRefGoogle Scholar
  49. 49.
    Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107(7):3076–3080. doi: 10.1073/pnas.0913087107 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204(13):3235–3245. doi: 10.1084/jem.20071239 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. doi: 10.1038/nature10510 PubMedCrossRefGoogle Scholar
  52. 52.
    Yao Y, Qian Y (2013) Expression regulation and function of NLRC5. Protein Cell 4(3):168–175. doi: 10.1007/s13238-012-2109-3 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Martin BK, Chin KC, Olsen JC, Skinner CA, Dey A, Ozato K, Ting JP (1997) Induction of MHC class I expression by the MHC class II transactivator CIITA. Immunity 6(5):591–600PubMedCrossRefGoogle Scholar
  54. 54.
    Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B (1994) Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265(5168):106–109PubMedCrossRefGoogle Scholar
  55. 55.
    Kobayashi KS, van den Elsen PJ (2012) NLRC5: a key regulator of MHC class I-dependent immune responses. Nat Rev Immunol 12(12):813–820. doi: 10.1038/nri3339 PubMedCrossRefGoogle Scholar
  56. 56.
    Davis BK, Roberts RA, Huang MT, Willingham SB, Conti BJ, Brickey WJ, Barker BR, Kwan M, Taxman DJ, Accavitti-Loper MA, Duncan JA, Ting JP (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 186(3):1333–1337. doi: 10.4049/jimmunol.1003111 PubMedCrossRefGoogle Scholar
  57. 57.
    Biswas A, Meissner TB, Kawai T, Kobayashi KS (2012) Cutting edge: impaired MHC class I expression in mice deficient for Nlrc5/class I transactivator. J Immunol 189(2):516–520. doi: 10.4049/jimmunol.1200064 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, Iliopoulos D, van den Elsen PJ, Kobayashi KS (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A 107(31):13794–13799. doi: 10.1073/pnas.1008684107 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Meissner TB, Li A, Kobayashi KS (2012) NLRC5: a newly discovered MHC class I transactivator (CITA). Microbes Infect 14(6):477–484. doi: 10.1016/j.micinf.2011.12.007 PubMedCrossRefGoogle Scholar
  60. 60.
    Meissner TB, Li A, Liu YJ, Gagnon E, Kobayashi KS (2012) The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity. Biochem Biophys Res Commun 418(4):786–791. doi: 10.1016/j.bbrc.2012.01.104 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Benko S, Magalhaes JG, Philpott DJ, Girardin SE (2010) NLRC5 limits the activation of inflammatory pathways. J Immunol 185(3):1681–1691. doi: 10.4049/jimmunol.0903900 PubMedCrossRefGoogle Scholar
  62. 62.
    Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF (2010) NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141(3):483–496. doi: 10.1016/j.cell.2010.03.040 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Tong Y, Cui J, Li Q, Zou J, Wang HY, Wang RF (2012) Enhanced TLR-induced NF-kappaB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res 22(5):822–835. doi: 10.1038/cr.2012.53 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Neerincx A, Lautz K, Menning M, Kremmer E, Zigrino P, Hosel M, Buning H, Schwarzenbacher R, Kufer TA (2010) A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses. J Biol Chem 285(34):26223–26232. doi: 10.1074/jbc.M110.109736 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ranjan P, Singh N, Kumar A, Neerincx A, Kremmer E, Cao W, Davis WG, Katz JM, Gangappa S, Lin R, Kufer TA, Sambhara S (2015) NLRC5 interacts with RIG-I to induce a robust antiviral response against influenza virus infection. Eur J Immunol 45:758–772. doi: 10.1002/eji.201344412 PubMedCrossRefGoogle Scholar
  66. 66.
    Kumar H, Pandey S, Zou J, Kumagai Y, Takahashi K, Akira S, Kawai T (2011) NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. J Immunol 186(2):994–1000. doi: 10.4049/jimmunol.1002094 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Graduate Program in ImmunologyUniversity of Iowa Carver College of MedicineIowa CityUSA
  2. 2.Inflammation Program, Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityUSA
  3. 3.Veterans Affairs Medical CenterIowa CityUSA

Personalised recommendations