Advertisement

Biochemical and Structural Analysis of Kinetochore Histone-Fold Complexes

  • Tatsuya Nishino
  • Tatsuo FukagawaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1413)

Abstract

The kinetochore connects chromosomes to microtubules during mitosis and therefore plays an essential role in faithful chromosome segregation. It is built at the centromeric region of the chromosome and is comprised of many protein complexes. CENP-S, -T, -W, and -X are kinetochore components with histone-folds. These proteins play important roles in establishment of kinetochore chromatin. Similar to canonical histones, these kinetochore histone-fold proteins form heteromeric complexes (CENP-S/CENP-X complex and CENP-T/CENP-W complex) and bind DNA in sequence independent manner. In addition, they form a CENP-T-W-S-X heterotetrameric complex and bind DNA in a manner that is different from both CENP-S-X and CENP-T-W. To understand how kinetochores form and function it is necessary to characterize the components in detail. Here, we describe our approaches in purification and characterization of the kinetochore histone-fold complexes.

Key words

Chromosome segregation Kinetochore Centromere Histone-fold Protein complex Protein expression Protein purification Protein–protein interaction Protein–DNA interaction Gel shift assay 

Notes

Acknowledgements

We thank members of the Fukagawa lab in particular Kozo Takeuchi for his help with sample preparation and characterization. We also acknowledge Kiyomi Kita and Mayumi Takahashi for their contributions.

References

  1. 1.
    Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28(17):2511–2531. doi: 10.1038/emboj.2009.173 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Perpelescu M, Fukagawa T (2011) The ABCs of CENPs. Chromosoma 120(5):425–446. doi: 10.1007/s00412-011-0330-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Takeuchi K, Fukagawa T (2012) Molecular architecture of vertebrate kinetochores. Exp Cell Res 318(12):1367–1374. doi: 10.1016/j.yexcr.2012.02.016 CrossRefPubMedGoogle Scholar
  4. 4.
    Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189(7):1143–1155. doi: 10.1083/jcb.201001013 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8(5):446–457. doi: 10.1038/ncb1396 CrossRefPubMedGoogle Scholar
  6. 6.
    Kwon MS, Hori T, Okada M, Fukagawa T (2007) CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 18(6):2155–2168. doi: 10.1091/mbc.E07-01-0045 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwen BF, Shang WH, Suzuki E, Okawa K, Cheeseman IM, Fukagawa T (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135(6):1039–1052. doi: 10.1016/j.cell.2008.10.019 CrossRefPubMedGoogle Scholar
  8. 8.
    Hori T, Okada M, Maenaka K, Fukagawa T (2008) CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol Biol Cell 19(3):843–854. doi: 10.1091/mbc.E07-06-0556 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Amano M, Suzuki A, Hori T, Backer C, Okawa K, Cheeseman IM, Fukagawa T (2009) The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 186(2):173–182. doi: 10.1083/jcb.200903100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nishino T, Takeuchi K, Gascoigne KE, Suzuki A, Hori T, Oyama T, Morikawa K, Cheeseman IM, Fukagawa T (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148(3):487–501. doi: 10.1016/j.cell.2011.11.061 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Petrovic A, Pasqualato S, Dube P, Krenn V, Santaguida S, Cittaro D, Monzani S, Massimiliano L, Keller J, Tarricone A, Maiolica A, Stark H, Musacchio A (2010) The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 190(5):835–852. doi: 10.1083/jcb.201002070 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Screpanti E, De Antoni A, Alushin GM, Petrovic A, Melis T, Nogales E, Musacchio A (2011) Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr Biol 21(5):391–398. doi: 10.1016/j.cub.2010.12.039 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schleiffer A, Maier M, Litos G, Lampert F, Hornung P, Mechtler K, Westermann S (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14(6):604–613. doi: 10.1038/ncb2493 CrossRefPubMedGoogle Scholar
  14. 14.
    Malvezzi F, Litos G, Schleiffer A, Heuck A, Mechtler K, Clausen T, Westermann S (2013) A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J 32(3):409–423. doi: 10.1038/emboj.2012.356 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nishino T, Rago F, Hori T, Tomii K, Cheeseman IM, Fukagawa T (2013) CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 32(3):424–436. doi: 10.1038/emboj.2012.348 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hornung P, Troc P, Malvezzi F, Maier M, Demianova Z, Zimniak T, Litos G, Lampert F, Schleiffer A, Brunner M, Mechtler K, Herzog F, Marlovits TC, Westermann S (2014) A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J Cell Biol 206(4):509–524. doi: 10.1083/jcb.201403081 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Takeuchi K, Nishino T, Mayanagi K, Horikoshi N, Osakabe A, Tachiwana H, Hori T, Kurumizaka H, Fukagawa T (2014) The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA. Nucleic Acids Res 42(3):1644–1655. doi: 10.1093/nar/gkt1124 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16. doi: 10.1385/1-59259-681-9:1 PubMedGoogle Scholar
  19. 19.
    Suzuki A, Hori T, Nishino T, Usukura J, Miyagi A, Morikawa K, Fukagawa T (2011) Spindle microtubules generate tension-dependent changes in the distribution of inner kinetochore proteins. J Cell Biol 193(1):125–140. doi: 10.1083/jcb.201012050 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Molecular GeneticsNational Institute of Genetics and Graduate University for Advanced Studies (SOKENDAI)MishimaJapan
  2. 2.Department of Biological Science and TechnologyGraduate School of Industrial Science and Technology, Tokyo University of ScienceKatsushika-kuJapan
  3. 3.Graduate School of Frontier BiosciencesOsaka UniversitySuita 565-0871Japan

Personalised recommendations