Advertisement

Generation and Purification of Tetraploid Cells

  • Elizabeth M. Shenk
  • Neil J. GanemEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1413)

Abstract

Tetraploid cells are genetically unstable and have the capacity to promote the development and/or progression of human malignancies. It is now estimated that ~40 % of all solid tumors have passed through a tetraploid intermediate stage at some point during their development. Understanding the biological characteristics of tetraploid cells that impart oncogenic properties is therefore a highly relevant and fundamentally important aspect of cancer biology. Here, we describe strategies to efficiently generate and purify tetraploid cells for use in cell biological studies.

Key words

Cytokinesis Mitotic slippage Polyploid Hippo FUCCI Centrosome 

Notes

Acknowledgments

N.J.G is a Karin Grunebaum Cancer Research Foundation Fellow in the Shamim and Ashraf Dahod Breast Cancer Research Laboratories and is supported by grants from the Richard and Susan Smith Family Foundation, the Searle Scholars Program, the Melanoma Research Alliance, the Skin Cancer Foundation, the Sarcoma Foundation of America, and the NIH/NCI (K99/R00 CA154531-01).

References

  1. 1.
    Coward J, Harding A (2014) Size Does Matter: Why Polyploid Tumor Cells are Critical Drug Targets in the War on Cancer. Front Oncol 4:123. doi: 10.3389/fonc.2014.00123 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Davoli T, de Lange T (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21:765–776. doi: 10.1016/j.ccr.2012.03.044 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y (2007) A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr Biol 17:431–437. doi: 10.1016/j.cub.2007.01.049 CrossRefPubMedGoogle Scholar
  4. 4.
    Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047. doi: 10.1038/nature04217 CrossRefPubMedGoogle Scholar
  5. 5.
    Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282. doi: 10.1038/nature08136 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162. doi: 10.1016/j.gde.2007.02.011 CrossRefPubMedGoogle Scholar
  7. 7.
    Lundberg G, Jin Y, Sehic D, Ora I, Versteeg R, Gisselsson D (2013) Intratumour diversity of chromosome copy numbers in neuroblastoma mediated by on-going chromosome loss from a polyploid state. PLoS One 8, e59268. doi: 10.1371/journal.pone.0059268 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23. doi: 10.1016/j.ccr.2006.10.019 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121:3859–3866. doi: 10.1242/jcs.039537 CrossRefPubMedGoogle Scholar
  10. 10.
    Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Gronroos E, Endesfelder D, Joshi T, Mouradov D, Gibbs P, Ward RL, Hawkins NJ, Szallasi Z, Sieber OM, Swanton C (2014) Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4:175–185. doi: 10.1158/2159-8290.CD-13-0285 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang C-Z, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140. doi: 10.1038/ng.2760 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wong C, Stearns T (2005) Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6:6. doi: 10.1186/1471-2121-6-6 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Andreassen PR, Lohez OD, Lacroix FB, Margolis RL (2001) Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12:1315–1328CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213:261–264CrossRefPubMedGoogle Scholar
  15. 15.
    Ganem NJ, Cornils H, Chiu SY, O'Rourke KP, Arnaud J, Yimlamai D, Thery M, Camargo FD, Pellman D (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158:833–848. doi: 10.1016/j.cell.2014.06.029 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7:637–651. doi: 10.1016/j.devcel.2004.09.002 CrossRefPubMedGoogle Scholar
  17. 17.
    Ganem NJ, Pellman D (2012) Linking abnormal mitosis to the acquisition of DNA damage. J Cell Biol 199:871–881. doi: 10.1083/jcb.201210040 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Orth JD, Loewer A, Lahav G, Mitchison TJ (2012) Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell 23:567–576. doi: 10.1091/mbc.E11-09-0781 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Krzywicka-Racka A, Sluder G (2011) Repeated cleavage failure does not establish centrosome amplification in untransformed human cells. J Cell Biol 194:199–207. doi: 10.1083/jcb.201101073 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Panopoulos A, Pacios-Bras C, Choi J, Yenjerla M, Sussman MA, Fotedar R, Margolis RL (2014) Failure of cell cleavage induces senescence in tetraploid primary cells. Mol Biol Cell 25:3105–3118. doi: 10.1091/mbc.E14-03-0844 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299:1743–1747. doi: 10.1126/science.1081412 CrossRefPubMedGoogle Scholar
  22. 22.
    Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498. doi: 10.1016/j.cell.2007.12.033 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departments of Pharmacology & Experimental Therapeutics and Medicine, Division of Hematology and OncologyBoston University School of MedicineBostonUSA

Personalised recommendations