Advertisement

Studying Kinetochore Kinases

  • Adrian T. SaurinEmail author
  • Geert J. P. L. Kops
Part of the Methods in Molecular Biology book series (MIMB, volume 1413)

Abstract

Mitotic kinetochores are signaling network hubs that regulate chromosome movements, attachment error-correction, and the spindle assembly checkpoint. Key switches in these networks are kinases and phosphatases that enable rapid responses to changing conditions. Describing the mechanisms and dynamics of their localized activation and deactivation is therefore instrumental for understanding the spatiotemporal control of chromosome segregation.

Key words

Kinetochore Kinase Small molecule inhibitor Antibody Signaling Phosphorylation Spindle checkpoint 

References

  1. 1.
    Sacristan C, Kops GJPL (2015) Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol 25:21. doi: 10.1016/j.tcb.2014.08.006 CrossRefPubMedGoogle Scholar
  2. 2.
    London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15:736–748CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Magidson V et al (2011) The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146:555–567CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146:568–581CrossRefPubMedGoogle Scholar
  7. 7.
    Vleugel M, Hoogendoorn E, Snel B, Kops GJPL (2012) Evolution and function of the mitotic checkpoint. Dev Cell 23:239–250CrossRefPubMedGoogle Scholar
  8. 8.
    Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint review. Curr Biol 22:R966–R980CrossRefPubMedGoogle Scholar
  9. 9.
    Liu D et al (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188:809–820CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Foley EA, Maldonado M, Kapoor TM (2011) Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 13:1265–1271CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Suijkerbuijk SJE, Vleugel M, Teixeira A, Kops GJPL (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23:745–755CrossRefPubMedGoogle Scholar
  12. 12.
    Nijenhuis W, Vallardi G, Teixeira A, Kops GJPL, Saurin AT (2014) Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol 16:1257–1264CrossRefPubMedGoogle Scholar
  13. 13.
    Pinsky BA, Nelson CR, Biggins S (2009) Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr Biol 19:1182–1187CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Espert A et al (2014) PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing. J Cell Biol 206:833–842CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Macůrek L et al (2008) Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455:119–123CrossRefPubMedGoogle Scholar
  16. 16.
    Saurin AT, van der Waal MS, Medema REH, Lens SMA, Kops GJPL (2011) Aurora B potentiates mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. Nat Commun 2:316–319CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yamagishi Y, Yang C-H, Tanno Y, Watanabe Y (2012) MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 14:746–752CrossRefPubMedGoogle Scholar
  18. 18.
    Bishop AC, Buzko O, Shokat KM (2001) Magic bullets for protein kinases. Trends Cell Biol 11:167–172CrossRefPubMedGoogle Scholar
  19. 19.
    Ditchfield C et al (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161:267–280CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hauf S et al (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lens SMA, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinasesin cancer. Nat Rev Cancer 10:1–17CrossRefGoogle Scholar
  22. 22.
    Kwiatkowski N et al (2010) Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 6:359CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Santaguida S, Tighe A, D’Alise AM, Taylor SS, Musacchio A (2010) Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 190:73–87CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hewitt L et al (2010) Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol 190:25–34CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Colombo R et al (2010) Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer Res 70:10255–10264CrossRefPubMedGoogle Scholar
  26. 26.
    Lénárt P et al (2007) The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 17:304–315CrossRefPubMedGoogle Scholar
  27. 27.
    Santamaria A et al (2007) Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol Biol Cell 18:4024–4036CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vassilev LT et al (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103:10660–10665CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hengeveld RCC et al (2012) Development of a chemical genetic approach for human aurora B kinase identifies novel substrates of the chromosomal passenger complex. Mol Cell Proteomics 11:47–59CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sliedrecht T, Zhang C, Shokat KM, Kops GJPL, Cimini D (2010) Chemical genetic inhibition of Mps1 in stable human cell lines reveals novel aspects of Mps1 function in mitosis. PLoS One 5:e10251CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Maciejowski J et al (2010) Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J Cell Biol 190:89–100CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Burkard ME et al (2007) Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc Natl Acad Sci U S A 104:4383–4388CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kang J et al (2008) Structure and substrate recruitment of the human spindle checkpoint kinase bub1. Mol Cell 32:394–405CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hochegger H et al (2007) An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J Cell Biol 178:257–268CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang Z, Kenny AE, Brito DA, Rieder CL (2009) Cells satisfy the mitotic checkpoint in Taxol, and do so faster in concentrations that stabilize syntelic attachments. J Cell Biol 186:675–684CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Santaguida S, Vernieri C, Villa F, Ciliberto A, Musacchio A (2011) Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction. EMBO J 30:1508–1519CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Collin P, Nashchekina O, Walker R, Pines J (2013) The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat Cell Biol 15:1378–1385CrossRefPubMedGoogle Scholar
  38. 38.
    Daum JR et al (2011) Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr Biol 21:1018–1024CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lara-Gonzalez P, Taylor SS (2012) Cohesion fatigue explains why pharmacological inhibition of the APC/C induces a spindle checkpoint-dependent mitotic arrest. PLoS One 7:e49041CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
  2. 2.Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences)UtrechtThe Netherlands
  3. 3.Cancer Genomics NetherlandsUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations