Advertisement

Assay of Endocannabinoid Oxidation by Cyclooxygenase-2

  • Shalley N. Kudalkar
  • Philip J. Kingsley
  • Lawrence J. MarnettEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1412)

Abstract

The endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonylethanolamide (AEA), are endogenous ligands for the cannabinoid receptors (CB1 and CB2) and are implicated in a wide array of physiological processes. These neutral arachidonic acid (AA) derivatives have been identified as efficient substrates for the second isoform of the cyclooxygenase enzyme (COX-2). A diverse family of prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs) is generated by the action of COX-2 (and downstream prostaglandin synthases) on 2-AG and AEA. As the biological importance of the endocannabinoid system becomes more apparent, there is a tremendous need for robust, sensitive, and efficient analytical methodology for the endocannabinoids and their metabolites. In this chapter, we describe methodology suitable for carrying out oxygenation of endocannabinoids by COX-2, and analysis of products of endocannabinoid oxygenation by COX-2 and of endocannabinoids themselves from in vitro and cell assays.

Key words

Cyclooxygenase-2 Endocannabinoids PG-Gs PG-EAs In vitro assay Cell assay LC-MS/MS 

Notes

Acknowledgements

We are grateful to Carol Rouzer for editorial assistance. This work was supported by a research grant from the National Institutes of Health (GM 15431) to L.J.M.

References

  1. 1.
    Devane WA, Hanus L, Breuer A et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949CrossRefPubMedGoogle Scholar
  2. 2.
    Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates long-term potentiation. Nature 388:773–778CrossRefPubMedGoogle Scholar
  3. 3.
    Kozak KR, Rowlinson SW, Marnett LJ (2000) Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem 275:33744–33749CrossRefPubMedGoogle Scholar
  4. 4.
    Yu M, Ives D, Ramesha CS (1997) Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem 272:21181–21186CrossRefPubMedGoogle Scholar
  5. 5.
    Sang N, Zhang J, Chen C (2006) PGE2 glycerol ester, a COX-2 oxidative metabolite of 2-arachidonoyl glycerol, modulates inhibitory synaptic transmission in mouse hippocampal neurons. J Physiol (Lond) 572:735–745CrossRefGoogle Scholar
  6. 6.
    Sang N, Zhang J, Chen C (2007) COX-2 oxidative metabolite of endocannabinoid 2-AG enhances excitatory glutamatergic synaptic transmission and induces neurotoxicity. J Neurochem 102:1966–1977CrossRefPubMedGoogle Scholar
  7. 7.
    Nirodi CS, Crews BC, Kozak KR et al (2004) The glyceryl ester of prostaglandin E2 mobilizes calcium and activates signal transduction in RAW264.7 cells. Proc Natl Acad Sci U S A 101:1840–1845CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hu SS-J, Bradshaw HB, Chen JSC et al (2008) Prostaglandin E-2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol, induces hyperalgesia and modulates nf kappa b activity. Br J Pharmacol 153:1538–1549CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Valdeolivas S, Pazos MR, Bisogno T et al (2013) The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: A potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death Dis 4:e862CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Alhouayek M, Masquelier J, Cani PD et al (2013) Implication of the anti-inflammatory bioactive lipid prostaglandin d2-glycerol ester in the control of macrophage activation and inflammation by abhd6. Proc Natl Acad Sci U S A 110:17558–17563CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rouzer CA, Marnett LJ (2005) Glycerylprostaglandin synthesis by resident peritoneal macrophages in response to a zymosan stimulus. J Biol Chem 280:26690–26700CrossRefPubMedGoogle Scholar
  12. 12.
    Kingsley PJ, Marnett LJ (2003) Analysis of endocannabinoids by Ag+ coordination tandem mass spectrometry. Anal Biochem 314:8–15CrossRefPubMedGoogle Scholar
  13. 13.
    Rouzer CA, Ghebreselasie K, Marnett LJ (2002) Chemical stability of 2-arachidonylglycerol under biological conditions. Chem Phys Lipids 119:69–82CrossRefPubMedGoogle Scholar
  14. 14.
    Kingsley PJ, Rouzer CA, Saleh S et al (2005) Simultaneous analysis of prostaglandin glyceryl esters and prostaglandins by electrospray tandem mass spectrometry. Anal Biochem 343:203–211CrossRefPubMedGoogle Scholar
  15. 15.
    Weber A, Ni JS, Ling KHJ et al (2004) Formation of prostamides from anandamide in FAAH knockout mice analyzed by HPLC with tandem mass spectrometry. J Lipid Res 45:757–763CrossRefPubMedGoogle Scholar
  16. 16.
    Marnett LJ, Rowlinson SW, Goodwin DC et al (1999) Arachidonic acid oxygenation by COX-1 and COX-2 - mechanisms of catalysis and inhibition. J Biol Chem 274:22903–22906CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shalley N. Kudalkar
    • 1
    • 2
  • Philip J. Kingsley
    • 1
    • 2
    • 3
  • Lawrence J. Marnett
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt Center in Molecular Toxicology, Vanderbilt-Ingram Cancer CenterVanderbilt University School of MedicineNashvilleUSA
  2. 2.Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Center in Molecular Toxicology, Vanderbilt-Ingram Cancer CenterVanderbilt University School of MedicineNashvilleUSA
  3. 3.Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Center in Molecular Toxicology, Vanderbilt-Ingram Cancer CenterVanderbilt University School of MedicineNashvilleUSA
  4. 4.Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt Center in Molecular Toxicology, Vanderbilt-Ingram Cancer CenterVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations