Advertisement

Imaging Approaches to Investigate Myonuclear Positioning in Drosophila

  • Mafalda Azevedo
  • Victoria K. Schulman
  • Eric Folker
  • Mridula Balakrishnan
  • Mary Baylies
Part of the Methods in Molecular Biology book series (MIMB, volume 1411)

Abstract

In the skeletal muscle, nuclei are positioned at the periphery of each myofiber and are evenly distributed along its length. Improper positioning of myonuclei has been correlated with muscle disease and decreased muscle function. Several mechanisms required for regulating nuclear position have been identified using the fruit fly, Drosophila melanogaster. The conservation of the myofiber between the fly and vertebrates, the availability of advanced genetic tools, and the ability to visualize dynamic processes using fluorescent proteins in vivo makes the fly an excellent system to study myonuclear positioning. This chapter describes time-lapse and fixed imaging methodologies using both the Drosophila embryo and the larva to investigate mechanisms of myonuclear positioning.

Key words

Drosophila Muscle Nuclear movement Embryo Larvae 

Notes

Acknowledgments

We thank the members of the Baylies Lab for advice, particularly, Krista Dobi, Jonathan Rosen, and Stefanie Windner for providing images for Fig. 3A (Dobi) and 2A Stages 14/15 and Stage 17 (Rosen and Windner, respectively). We also acknowledge our funding agencies, SFRH/BD/52041/2012 (Azevedo), and MDA and NIH NIAMS RO1-068128 (Baylies).

References

  1. 1.
    Romero NB (2010) Centronuclear myopathies: a widening concept. Neuromuscul Disord 20(4):223–228CrossRefPubMedGoogle Scholar
  2. 2.
    Metzger T et al (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484(7392):120–124CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Folker ES, Schulman VK, Baylies MK (2012) Muscle length and myonuclear position are independently regulated by distinct Dynein pathways. Development 139(20):3827–3837CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schulman VK et al (2014) Syd/JIP3 and JNK signaling are required for myonuclear positioning and muscle function. PLoS Genet 10(12):e1004880CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Folker ES, Schulman VK, Baylies MK (2014) Translocating myonuclei have distinct leading and lagging edges that require kinesin and dynein. Development 141(2):355–366CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schulman VK, Folker ES, Baylies MK (2013) A method for reversible drug delivery to internal tissues of Drosophila embryos. Fly (Austin) 7(3):193–203CrossRefGoogle Scholar
  7. 7.
    Dobi KC, Schulman VK, Baylies MK (2015) Specification of the somatic musculature in Drosophila. Wiley Interdiscip Rev Dev Biol 4(4):357–375CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schulman VK, Dobi KC, Baylies MK (2015) Morphogenesis of the somatic musculature in Drosophila melanogaster. Wiley Interdiscip Rev Dev Biol 4(4):313–334CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bourgouin C, Lundgren SE, Thomas JB (1992) Apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron 9:549–561CrossRefPubMedGoogle Scholar
  10. 10.
    Fujioka M et al (2005) Embryonic even skipped-dependent muscle and heart cell fates are required for normal adult activity, heart function, and lifespan. Circ Res 97(11):1108–1114CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Knirr S, Frasch M (2001) Molecular integration of inductive and mesoderm-intrinsic inputs governs even-skipped enhancer activity in a subset of pericardial and dorsal muscle progenitors. Dev Biol 238(1):13–26CrossRefPubMedGoogle Scholar
  12. 12.
    Landgraf M, Thor S (2006) Development of Drosophila motoneurons: specification and morphology. Semin Cell Dev Biol 17(1):3–11CrossRefPubMedGoogle Scholar
  13. 13.
    Demontis F, Perrimon N (2009) Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136(6):983–993CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kaltschmidt JA et al (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2(1):7–12CrossRefPubMedGoogle Scholar
  15. 15.
    Haseloff J, Dormand EL, Brand AH (1999) Live imaging with green fluorescent protein. Methods Mol Biol 122:241–259PubMedGoogle Scholar
  16. 16.
    Brent JR, Werner KM, McCabe BD (2009) Drosophila larval NMJ dissection. J Vis Exp (24), e1107Google Scholar
  17. 17.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415PubMedGoogle Scholar
  18. 18.
    Beckett K, Baylies MK (2007) 3D analysis of founder cell and fusion competent myoblast arrangements outlines a new model of myoblast fusion. Dev Biol 309(1):113–125CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schnorrer F et al (2010) Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature 464(7286):287–291CrossRefPubMedGoogle Scholar
  20. 20.
    Frasch M et al (1987) Characterization and localization of the even-skipped protein of Drosophila. EMBO J 6(3):749–759PubMedPubMedCentralGoogle Scholar
  21. 21.
    Williams JA, Bell JB, Carroll SB (1991) Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes Dev 5(12B):2481–2495CrossRefPubMedGoogle Scholar
  22. 22.
    Elhanany-Tamir H et al (2012) Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. J Cell Biol 198(5):833–846CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Baylies MK, Bate M (1996) Twist: a myogenic switch in Drosophila. Science 272(5267):1481–1484CrossRefPubMedGoogle Scholar
  24. 24.
    Ranganayakulu G et al (1998) Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 125(16):3037–3048PubMedGoogle Scholar
  25. 25.
    Chen EH, Olson EN (2001) Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev Cell 1(5):705–715CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang YQ et al (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107(5):591–603CrossRefPubMedGoogle Scholar
  27. 27.
    Richardson BE et al (2007) SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development 134(24):4357–4367CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ritzenthaler S, Suzuki E, Chiba A (2000) Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nat Neurosci 3(10):1012–1017CrossRefPubMedGoogle Scholar
  29. 29.
    Dutta D et al (2002) Real-time imaging of morphogenetic movements in Drosophila using Gal4-UAS-driven expression of GFP fused to the actin-binding domain of moesin. Genesis 34(1-2):146–151CrossRefPubMedGoogle Scholar
  30. 30.
    Kocherlakota KS et al (2008) Analysis of the cell adhesion molecule sticks-and-stones reveals multiple redundant functional domains, protein-interaction motifs and phosphorylated tyrosines that direct myoblast fusion in Drosophila melanogaster. Genetics 178(3):1371–1383CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mafalda Azevedo
    • 1
    • 2
  • Victoria K. Schulman
    • 2
    • 3
  • Eric Folker
    • 2
    • 4
  • Mridula Balakrishnan
    • 2
    • 5
  • Mary Baylies
    • 2
    • 5
  1. 1.Graduate Program in Basic and Applied Biology (GABBA), Institute of Biomedical Sciences Abel SalazarUniversity of PortoPortoPortugal
  2. 2.Program in Developmental BiologySloan Kettering InstituteNew YorkUSA
  3. 3.Department of GeneticsYale University School of MedicineNew HavenUSA
  4. 4.Biology DepartmentBoston CollegeChestnut HillUSA
  5. 5.Weill Graduate School at Cornell Medical CollegeNew YorkUSA

Personalised recommendations