Advertisement

Optogenetics pp 167-175 | Cite as

Optogenetics in Drosophila Neuroscience

  • Thomas Riemensperger
  • Robert J. Kittel
  • André FialaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1408)

Abstract

Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory.

Key words

Optogenetics Neuronal circuits Drosophila melanogaster Learning and memory ChR2-XXL Dopamine Mushroom body 

Notes

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (FI 821/3-1 and SFB 889/B4 to A.F., and KI 1460/1-1, SFB 1047/A5, and FOR 2140/TP3 to R.J.K.).

References

  1. 1.
    Fiala A (2013) Optogenetic approaches in behavioral neuroscience. In: Hegemann P, Sigrist S (eds) Optogenetics. De Gruyter, Berlin/Boston, pp 91–97Google Scholar
  2. 2.
    Wimmer EA (2003) Innovations: applications of insect transgenesis. Nat Rev Genet 4(3):225–232CrossRefPubMedGoogle Scholar
  3. 3.
    Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72(2):202–230CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Helfrich-Förster C (2005) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav 4(2):65–76CrossRefPubMedGoogle Scholar
  5. 5.
    Behnia R, Desplan C (2015) Visual circuits in flies: beginning to see the whole picture. Curr Opin Neurobiol 34:125–132CrossRefPubMedGoogle Scholar
  6. 6.
    Wilson RI (2013) Early olfactory processing in Drosophila: mechanisms and principles. Annu Rev Neurosci 36:217–241CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Albert JT, Göpfert MC (2015) Hearing in Drosophila. Curr Opin Neurobiol 34:79–85CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fiala A (2007) Olfaction and olfactory learning in Drosophila: recent progress. Curr Opin Neurobiol 17(6):720–726CrossRefPubMedGoogle Scholar
  9. 9.
    Guven-Ozkan T, Davis RL (2014) Functional neuroanatomy of Drosophila olfactory memory formation. Learn Mem 21(10):519–526CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22(1):18–23CrossRefPubMedGoogle Scholar
  11. 11.
    Riemensperger T, Pech U, Dipt S et al (2012) Optical calcium imaging in the nervous system of Drosophila melanogaster. Biochim Biophys Acta 1820(8):1169–1178CrossRefPubMedGoogle Scholar
  12. 12.
    Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47(2):81–92CrossRefPubMedGoogle Scholar
  13. 13.
    Hamada FN, Rosenzweig M, Kang K et al (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454(7201):217–220CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fiala A, Suska A, Schlüter OM (2010) Optogenetic approaches in neuroscience. Curr Biol 20(20):897–903CrossRefGoogle Scholar
  15. 15.
    Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284CrossRefPubMedGoogle Scholar
  17. 17.
    Schroll C, Riemensperger T, Bucher D et al (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila. Curr Biol 16(17):1741–1747CrossRefPubMedGoogle Scholar
  18. 18.
    Pulver SR, Pashkovski SL, Hornstein NJ et al (2009) Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol 101(6):3075–3088CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hwang RY, Zhong L, Xu Y et al (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Biol 17(24):2105–2116CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bellmann D, Richardt A, Freyberger R et al (2010) Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front Behav Neurosci 4:27. doi: 10.3389/fnbeh.2010.00027 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ljaschenko D, Ehmann N, Kittel RJ (2013) Hebbian plasticity guides maturation of glutamate receptor fields in vivo. Cell Rep 3(5):1407–1413CrossRefPubMedGoogle Scholar
  22. 22.
    Ullrich S, Gueta R, Nagel G (2013) Degradation of channelopsin-2 in the absence of retinal and degradation resistance in certain mutants. Biol Chem 394(2):271–280CrossRefPubMedGoogle Scholar
  23. 23.
    Suh GS, Ben-Tabou de Leon S, Tanimoto H et al (2007) Light activation of an innate olfactory avoidance response in Drosophila. Curr Biol 17(10):905–908CrossRefPubMedGoogle Scholar
  24. 24.
    Lin JY, Knutsen PM, Muller A et al (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16(10):1499–1508CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Inagaki HK, Jung Y, Hoopfer ED et al (2014) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11(3):325–332CrossRefPubMedGoogle Scholar
  26. 26.
    Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dawydow A, Gueta R, Ljaschenko D et al (2014) Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci U S A 111(38):13972–13977CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157(2):263–277CrossRefPubMedGoogle Scholar
  29. 29.
    Riemensperger T, Völler T, Stock P et al (2005) Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol 15(21):1953–1960CrossRefPubMedGoogle Scholar
  30. 30.
    Schwaerzel M, Monastirioti M, Scholz H et al (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23(33):10495–10502PubMedGoogle Scholar
  31. 31.
    Aso Y, Siwanowicz I, Bräcker L et al (2010) Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol 20(16):1445–1451CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Claridge-Chang A, Roorda RD, Vrontou E et al (2009) Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405–415CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Aso Y, Herb A, Ogueta M et al (2012) Three dopamine pathways induce aversive odor memories with different stability. PLoS Genet 8(7):e1002768CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Friggi-Grelin F, Coulom H, Meller M et al (2003) Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 54(4):618–627CrossRefPubMedGoogle Scholar
  35. 35.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Thomas Riemensperger
    • 1
  • Robert J. Kittel
    • 2
  • André Fiala
    • 1
    Email author
  1. 1.Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and AnthropologyGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Department of Neurophysiology, Institute of PhysiologyJulius-Maximilians-Universität WürzburgWürzburgGermany

Personalised recommendations