Chemotaxis pp 397-415 | Cite as

Modeling Excitable Dynamics of Chemotactic Networks

  • Sayak Bhattacharya
  • Pablo A. IglesiasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1407)


The study of chemotaxis has benefited greatly from computational models that describe the response of cells to chemoattractant stimuli. These models must keep track of spatially and temporally varying distributions of numerous intracellular species. Moreover, recent evidence suggests that these are not deterministic interactions, but also include the effect of stochastic variations that trigger an excitable network. In this chapter we illustrate how to create simulations of excitable networks using the Virtual Cell modeling environment.

Key words

Mathematical model Chemotaxis Reaction-diffusion Stochastic systems Excitable systems 


  1. 1.
    Levchenko A, Iglesias PA (2002) Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82:50–63CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Levine H, Kessler DA, Rappel WJ (2006) Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. Proc Natl Acad Sci U S A 103:9761–9766CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Onsum MD, Rao CV (2009) Calling heads from tails: the role of mathematical modeling in understanding cell polarization. Curr Opin Cell Biol 21:74–81CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jilkine A, Edelstein-Keshet L (2011) A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput Biol 7:e1001121CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yang L, Effler JC, Kutscher BL et al (2008) Modeling cellular deformations using the level set formalism. BMC Syst Biol 2:68CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wolgemuth CW, Stajic J, Mogilner A (2011) Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys J 101:545–553CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vanderlei B, Feng JJ, Edelstein-Keshet L (2011) A computational model of cell polarization and motility coupling mechanics and biochemistry. Multiscale Model Simul 9:1420–1443CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Neilson MP, Veltman DM, van Haastert PJ et al (2011) Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biol 9:e1000618CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hecht I, Skoge ML, Charest PG et al (2011) Activated membrane patches guide chemotactic cell motility. PLoS Comput Biol 7:e1002044CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Holmes WR, Edelstein-Keshet L (2012) A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput Biol 8:e1002793CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shi C, Huang CH, Devreotes PN, Iglesias PA (2013) Interaction of motility, directional sensing, and polarity modules recreates the behaviors of chemotaxing cells. PLoS Comput Biol 9:e1003122CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Naoki H, Sakumura Y, Ishii S (2008) Stochastic control of spontaneous signal generation for gradient sensing in chemotaxis. J Theor Biol 255:259–266CrossRefPubMedGoogle Scholar
  13. 13.
    Xiong Y, Huang CH, Iglesias PA, Devreotes PN (2010) Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci U S A 107:17079–17086CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Iglesias PA, Devreotes PN (2012) Biased excitable networks: how cells direct motion in response to gradients. Curr Opin Cell Biol 24:245–253CrossRefPubMedGoogle Scholar
  15. 15.
    Ryan GL, Petroccia HM, Watanabe N, Vavylonis D (2012) Excitable actin dynamics in lamellipodial protrusion and retraction. Biophys J 102:1493–1502CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cooper RM, Wingreen NS, Cox EC (2012) An excitable cortex and memory model successfully predicts new pseudopod dynamics. PLoS One 7:e33528CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang CH, Tang M, Shi C et al (2013) An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat Cell Biol 15:1307–1316CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nishikawa M, Hörning M, Ueda M, Shibata T (2014) Excitable signal transduction induces both spontaneous and directional cell asymmetries in the phosphatidylinositol lipid signaling system for eukaryotic chemotaxis. Biophys J 106:723–734CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tang M, Wang M, Shi C et al (2014) Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. Nat Commun 5:5175CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Skoge M, Yue H, Erickstad M et al (2014) Cellular memory in eukaryotic chemotaxis. Proc Natl Acad Sci U S A 111:14448–14453CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Janetopoulos C, Ma L, Devreotes PN, Iglesias PA (2004) Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc Natl Acad Sci U S A 101:8951–8956CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Postma M, Bosgraaf L, Loovers HM, Van Haastert PJ (2004) Chemotaxis: signalling modules join hands at front and tail. EMBO Rep 5:35–40CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Balázsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision making and biological noise: from microbes to mammals. Cell 144:910–925CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237CrossRefPubMedGoogle Scholar
  26. 26.
    Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55CrossRefPubMedGoogle Scholar
  27. 27.
    Munsky B, Khammash M (2006) The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys 124:044104CrossRefPubMedGoogle Scholar
  28. 28.
    Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113:297–306CrossRefGoogle Scholar
  29. 29.
    Andrews SS (2012) Spatial and stochastic cellular modeling with the Smoldyn simulator. Methods Mol Biol 804:519–542CrossRefPubMedGoogle Scholar
  30. 30.
    Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6:e1000705CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Alves R, Antunes F, Salvador A (2006) Tools for kinetic modeling of biochemical networks. Nat Biotechnol 24:667–672CrossRefPubMedGoogle Scholar
  32. 32.
    Bathe K-J (1996) Finite element procedures. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  33. 33.
    Cowan AE, Moraru II, Schaff JC et al (2012) Spatial modeling of cell signaling networks. Methods Cell Biol 110:195–221CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Resasco DC, Gao F, Morgan F et al (2012) Virtual Cell: computational tools for modeling in cell biology. Wiley Interdiscip Rev Syst Biol Med 4:129–140CrossRefPubMedGoogle Scholar
  35. 35.
    Yang L, Iglesias PA (2009) Modeling spatial and temporal dynamics of chemotactic networks. Methods Mol Biol 571:489–505CrossRefPubMedGoogle Scholar
  36. 36.
    Li HY, Ng WP, Wong CH et al (2007) Coordination of chromosome alignment and mitotic progression by the chromosome-based Ran signal. Cell Cycle 6:1886–1895CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Cell BiologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations