Advertisement

In Situ Assays of Chemotropism During Yeast Mating

  • David E. Stone
  • Robert A. Arkowitz
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1407)

Abstract

Virtually all eukaryotic cells can grow in a polarized fashion in response to external signals. Cells can respond to gradients of chemoattractants or chemorepellents by directional growth, a process referred to as chemotropism. The budding yeast Saccharomyces cerevisiae undergoes chemotropic growth during mating, in which two haploid cells of opposite mating type grow towards one another. Mating pheromone gradients are essential for efficient mating in yeast and different yeast mutants are defective in chemotropism. Two methods of assessing the ability of yeast strains to respond to pheromone gradients are presented here.

Key words

Chemotropism Mating pheromone Bud scar Gradient Zygote 

Notes

Acknowledgments

The authors would like to thank Edward Draper and Madhushalini Sukumar for images and for helpful discussion. This work was supported by the Centre National de la Recherche Scientifique (RAA), the Association pour la Recherche sur le Cancer (SFI20121205755) (RAA), the SIGNALIFE LabEX (RAA), and National Science Foundation (MCB1024718 and MCB-1415589) (DES).

References

  1. 1.
    Arkowitz RA (2009) Chemical gradients and chemotropism in yeast. Cold Spring Harb Perspect Biol 1:a001958CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bi E, Park HO (2012) Cell polarization and cytokinesis in budding yeast. Genetics 191:347–387CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dohlman HG, Thorner JW (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70:703–754CrossRefPubMedGoogle Scholar
  4. 4.
    Dorer R, Pryciak PM, Hartwell LH (1995) Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients. J Cell Biol 131:845–861CrossRefPubMedGoogle Scholar
  5. 5.
    Nern A, Arkowitz RA (1998) A GTP-exchange factor required for cell orientation. Nature 391:195–198CrossRefPubMedGoogle Scholar
  6. 6.
    Segall JE (1993) Polarization of yeast cells in spatial gradients of α mating factor. Proc Natl Acad Sci U S A 90:8332–8336CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Valtz N, Peter M, Herskowitz I (1995) FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J Cell Biol 131:863–873CrossRefPubMedGoogle Scholar
  8. 8.
    Jackson CL, Hartwell LH (1990) Courtship in S. cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal. Cell 63:1039–1051CrossRefPubMedGoogle Scholar
  9. 9.
    Jackson CL, Hartwell LH (1990) Courtship in Saccharomyces cerevisiae: an early cell-cell interaction during mating. Mol Cell Biol 10:2202–2213CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brett ME, DeFlorio R, Stone DE, Eddington DT (2012) A microfluidic device that forms and redirects pheromone gradients to study chemotropism in yeast. Lab Chip 12:3127–3134CrossRefPubMedGoogle Scholar
  11. 11.
    Diener C, Schreiber G, Giese W et al (2014) Yeast mating and image-based quantification of spatial pattern formation. PLoS Comput Biol 10:e1003690CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dyer JM, Savage NS, Jin M et al (2013) Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr Biol 23:32–41CrossRefPubMedGoogle Scholar
  13. 13.
    Hao N, Nayak S, Behar M et al (2008) Regulation of cell signaling dynamics by the protein kinase-scaffold Ste5. Mol Cell 30:649–656CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jin M, Errede B, Behar M et al (2011) Yeast dynamically modify their environment to achieve better mating efficiency. Sci Signal 4:ra54CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kelley JB, Dixit G, Sheetz JB et al (2015) RGS proteins and septins cooperate to promote chemotropism by regulating polar cap mobility. Curr Biol 25:275–285CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee SS, Horvath P, Pelet S et al (2012) Quantitative and dynamic assay of single cell chemotaxis. Integr Biol (Camb) 4:381–390CrossRefGoogle Scholar
  17. 17.
    Moore TI, Chou CS, Nie Q et al (2008) Robust spatial sensing of mating pheromone gradients by yeast cells. PLoS One 3:e3865CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Moore TI, Tanaka H, Kim HJ et al (2013) Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction. Mol Biol Cell 24:521–534CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Barkai N, Rose MD, Wingreen NS (1998) Protease helps yeast find mating partners. Nature 396:422–423CrossRefPubMedGoogle Scholar
  20. 20.
    Deflorio R, Brett ME, Waszczak N et al (2013) Phosphorylation of Gβ is crucial for efficient chemotropism in yeast. J Cell Sci 126:2997–3009CrossRefPubMedGoogle Scholar
  21. 21.
    Schrick K, Garvik B, Hartwell LH (1997) Mating in Saccharomyces cerevisiae: the role of the pheromone signal transduction pathway in the chemotropic response to pheromone. Genetics 147:19–32PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534CrossRefPubMedGoogle Scholar
  23. 23.
    Suchkov DV, DeFlorio R, Draper E et al (2010) Polarization of the yeast pheromone receptor requires its internalization but not actin-dependent secretion. Mol Biol Cell 21:1737–1752CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Institute of Biology ValroseCNRS/INSERM/Université Nice-Sophia AntipolisNice Cedex 2France

Personalised recommendations