Vaccine Design pp 819-838 | Cite as

Preconditioning Vaccine Sites for mRNA-Transfected Dendritic Cell Therapy and Antitumor Efficacy

  • Kristen A. Batich
  • Adam M. Swartz
  • John H. SampsonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1403)


Messenger RNA (mRNA)-transfected dendritic cell (DC) vaccines have been shown to be a powerful modality for eliciting antitumor immune responses in mice and humans; however, their application has not been fully optimized since many of the factors that contribute to their efficacy remain poorly understood. Work stemming from our laboratory has recently demonstrated that preconditioning the vaccine site with a recall antigen prior to the administration of a dendritic cell vaccine creates systemic recall responses and resultantly enhances dendritic cell migration to the lymph nodes with improved antitumor efficacy. This chapter describes the generation of murine mRNA-transfected DC vaccines, as well as a method for vaccine site preconditioning with protein antigen formulations that create potent recall responses.

Key words

Dendritic cells Bone marrow Transcription mRNA Electroporation Preconditioning Protein antigen formulation Intradermal 


  1. 1.
    Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252CrossRefPubMedGoogle Scholar
  3. 3.
    Yu JS, Wheeler CJ, Zeltzer PM et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847PubMedGoogle Scholar
  4. 4.
    Okada H, Kalinski P, Ueda R et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336CrossRefPubMedGoogle Scholar
  5. 5.
    Yamanaka R, Abe T, Yajima N et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cho DY, Yang WK, Lee HC et al (2012) Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg 77:736–744CrossRefPubMedGoogle Scholar
  7. 7.
    Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60:1028–1034PubMedGoogle Scholar
  8. 8.
    Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472CrossRefPubMedGoogle Scholar
  9. 9.
    Nair SK, Morse M, Boczkowski D et al (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235:540–549CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nair SK, De Leon G, Boczkowski D et al (2014) Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp 65-specific cytotoxic T cells. Clin Cancer Res 20:2684–2694CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nair SK, Boczkowski D, Morse M et al (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369CrossRefPubMedGoogle Scholar
  12. 12.
    Bonehill A, Heirman C, Tuyaerts S et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172:6649–6657CrossRefPubMedGoogle Scholar
  13. 13.
    Inaba K, Inaba M, Romani N et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulolcyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702CrossRefPubMedGoogle Scholar
  14. 14.
    Nair S, Archer GE, Tedder TF (2012) Isolation and generation of human dendritic cells. Curr Protoc Immunol 7, Unit 7.32:1–23Google Scholar
  15. 15.
    Inaba K, Swiggard WJ, Steinman RM et al (2009) Isolation of dendritic cells. Curr Protoc Immunol 86:I:3.7:3.7.1–3.7.19Google Scholar
  16. 16.
    Lutz MB, Schnare M, Menges M et al (2002) Differential functions of IL-4 receptor types I and II for dendritic cell maturation and IL-12 production and their dependency on GM-CSF. J Immunol 169:3574–3580CrossRefPubMedGoogle Scholar
  17. 17.
    Hochrein H, O'Keeffe M, Luft T et al (2000) Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 192:823–833CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H (2002) Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol 80:477–483CrossRefPubMedGoogle Scholar
  19. 19.
    Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483CrossRefPubMedGoogle Scholar
  20. 20.
    Van Brussel I, Berneman ZN, Cools N (2012) Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system. Mediators Inflamm 2012:690643PubMedPubMedCentralGoogle Scholar
  21. 21.
    Schuurhuis DH, Lesterhuis WJ, Kramer M et al (2009) Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells. Cancer Immunol Immunother 58:1109–1115CrossRefPubMedGoogle Scholar
  22. 22.
    Karikó K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550CrossRefPubMedGoogle Scholar
  23. 23.
    De Vries I, Krooshoop D, Scharenborg N et al (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63:7–12Google Scholar
  24. 24.
    Eggert A, Schreurs M, Boerman O et al (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340–3345PubMedGoogle Scholar
  25. 25.
    Eggert A, van der Voort R, Torensma R et al (2003) Analysis of dendritic cell trafficking using EGFP-transgenic mice. Immunol Lett 89:17–24CrossRefPubMedGoogle Scholar
  26. 26.
    Martin-Fontecha A, Sebastiani S, Hopken UE et al (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Prins RM, Craft N, Bruhn KW et al (2006) The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J Immunol 176:157–164CrossRefPubMedGoogle Scholar
  28. 28.
    Chagnon F, Tanguay S, Ozdal OL et al (2005) Potentiation of a dendritic cell vaccine for murine renal cell carcinoma by CpG oligonucleotides. Clin Cancer Res 11:1302–1311PubMedGoogle Scholar
  29. 29.
    Strutt TM, McKinstry KK, Dibble JP et al (2010) Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med 16:558–564CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Narni-Mancinelli E, Campisi L, Bassand D et al (2007) Memory CD8+ T cells mediate antibacterial immunity via CCL3 activation of TNF/ROI+ phagocytes. J Exp Med 204:2075–2087CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mitchell DA, Batich KA, Gunn MD et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519:366–369CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Russell JE, Liebhaber SA (1996) The stability of human beta-globin mRNA is dependent on structural determinants positioned within its 3′ untranslated region. Blood 87:5314–5323PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kristen A. Batich
    • 1
    • 2
  • Adam M. Swartz
    • 1
    • 2
  • John H. Sampson
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of SurgeryDuke University Medical CenterDurhamUSA
  2. 2.Department of PathologyDuke University Medical CenterDurhamUSA
  3. 3.Department of Radiation OncologyDuke University Medical CenterDurhamUSA
  4. 4.Department of ImmunologyDuke University Medical CenterDurhamUSA
  5. 5.The Preston Robert Tisch Brain Tumor CenterDuke University Medical CenterDurhamUSA

Personalised recommendations