Advertisement

Vaccine Design pp 363-383 | Cite as

Overcoming Enterotoxigenic Escherichia coli Pathogen Diversity: Translational Molecular Approaches to Inform Vaccine Design

  • James M. FleckensteinEmail author
  • David A. Rasko
Part of the Methods in Molecular Biology book series (MIMB, volume 1403)

Abstract

Enterotoxigenic Escherichia coli (ETEC) are a genetically diverse E. colipathovar that share in the ability to produce heat-labile toxin and/or heat-stable toxins. While these pathogens contribute substantially to the burden of diarrheal illness in developing countries, at present, there is no suitable broadly protective vaccine to prevent these common infections. Most vaccine development attempts to date have followed a classical approach involving a relatively small group of antigens. The extraordinary underlying genetic plasticity of E. coli has confounded the antigen valency requirements based on this approach. The recent discovery of additional virulence proteins within this group of pathogens, as well as the availability of whole-genome sequences from hundreds of ETEC strains to facilitate identification of conserved molecules, now permits a reconsideration of the classical approaches, and the exploration of novel antigenic targets to complement existing strategies overcoming antigenic diversity that has impeded progress toward a broadly protective vaccine. Progress to date in antigen discovery and methods currently available to explore novel immunogens are outlined here.

Key words

Escherichia coli Enterotoxigenic Subunit vaccines Bacterial genome Antigenic diversity 

Notes

Acknowledgements

The work described was supported by Grant Number 2R01AI089894 from the National Institute of Allergy and Infectious Diseases (NIAID), the PATH Enteric Vaccine Initiative (EVI), the Bill and Melinda Gates Foundation (OPP1099494), and the Department of Veterans Affairs. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies.

References

  1. 1.
    Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D et al (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case–control study. Lancet 382:209–222CrossRefPubMedGoogle Scholar
  2. 2.
    Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H (2010) Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 12:89–98CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027–1036CrossRefPubMedGoogle Scholar
  4. 4.
    Vaandrager AB, Smolenski A, Tilly BC, Houtsmuller AB et al (1998) Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc Natl Acad Sci U S A 95:1466–1471CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Golin-Bisello F, Bradbury N, Ameen N (2005) STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 289:C708–C716CrossRefPubMedGoogle Scholar
  6. 6.
    Chao AC, de Sauvage FJ, Dong YJ, Wagner JA, Goeddel DV, Gardner P (1994) Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J 13(5):1065–1072PubMedPubMedCentralGoogle Scholar
  7. 7.
    Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M et al (2010) A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia colistrain H10407. J Bacteriol 192:5822–5831Google Scholar
  8. 8.
    Wolf MK (1997) Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin Microbiol Rev 10:569–584PubMedPubMedCentralGoogle Scholar
  9. 9.
    Peruski LF Jr, Kay BA, El-Yazeed RA, El-Etr SH et al (1999) Phenotypic diversity of enterotoxigenic Escherichia coli strains from a community-based study of pediatric diarrhea in periurban Egypt. J Clin Microbiol 37:2974–2978PubMedPubMedCentralGoogle Scholar
  10. 10.
    Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    von Mentzer A, Connor TR, Wieler LH, Semmler T et al (2014) Identification of enterotoxigenic Escherichia coli(ETEC) clades with long-term global distribution. Nat Genet 46:1321–1326Google Scholar
  12. 12.
    Touchon M, Hoede C, Tenaillon O, Barbe V et al (2009) Organised genome dynamics in the Escherichia colispecies results in highly diverse adaptive paths. PLoS Genet 5(1), e1000344Google Scholar
  13. 13.
    Dorsey FC, Fischer JF, Fleckenstein JM (2006) Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cell Microbiol 8:1516–1527CrossRefPubMedGoogle Scholar
  14. 14.
    Tacket CO, Losonsky G, Link H, Hoang Y, Guesry P, Hilpert H, Levine MM (1988) Protection by milk immunoglobulin concentrate against oral challenge with enterotoxigenic Escherichia coli. N Engl J Med 318:1240–1243CrossRefPubMedGoogle Scholar
  15. 15.
    Freedman DJ, Tacket CO, Delehanty A, Maneval DR, Nataro J, Crabb JH (1998) Milk immunoglobulin with specific activity against purified colonization factor antigens can protect against oral challenge with enterotoxigenic Escherichia coli. J Infect Dis 177:662–667CrossRefPubMedGoogle Scholar
  16. 16.
    McKenzie R, Darsley M, Thomas N, Randall R et al (2008) A double-blind, placebo-controlled trial to evaluate the efficacy of PTL-003, an attenuated enterotoxigenic E. coli (ETEC) vaccine strain, in protecting against challenge with virulent ETEC. Vaccine 26:4731–4739CrossRefPubMedGoogle Scholar
  17. 17.
    Darsley MJ, Chakraborty S, Denearing B, Sack DA et al (2012) ACE527 oral, live attenuated ETEC vaccine reduces the incidence and severity of diarrhea in a human challenge model of diarrheal disease. Clin Vaccine Immunol 19:1921–1931CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sack DA, Shimko J, Torres O, Bourgeois AL et al (2007) Randomised, double-blind, safety and efficacy of a killed oral vaccine for enterotoxigenic E. coli diarrhoea of travellers to Guatemala and Mexico. Vaccine 25:4392–4400CrossRefPubMedGoogle Scholar
  19. 19.
    Li YF, Poole S, Rasulova F, McVeigh AL, Savarino SJ, Xia D (2007) A receptor-binding site as revealed by the crystal structure of CfaE, the colonization factor antigen I fimbrial adhesin of enterotoxigenic Escherichia coli. J Biol Chem 282:23970–23980CrossRefPubMedGoogle Scholar
  20. 20.
    Li YF, Poole S, Nishio K, Jang K et al (2009) Structure of CFA/I fimbriae from enterotoxigenic Escherichia coli. Proc Natl Acad Sci U S A 106:10793–10798CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Giron JA, Levine MM, Kaper JB (1994) Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli. Mol Microbiol 12:71–82CrossRefPubMedGoogle Scholar
  22. 22.
    Roy SP, Rahman MM, Yu XD, Tuittila M, Knight SD, Zavialov AV (2012) Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. Mol Microbiol 86:1100–1115CrossRefPubMedGoogle Scholar
  23. 23.
    Isidean SD, Riddle MS, Savarino SJ, Porter CK (2011) A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine 29:6167–6178CrossRefPubMedGoogle Scholar
  24. 24.
    Del Canto F, Botkin DJ, Valenzuela P, Popov V et al (2012) Identification of the Coli Surface Antigen 23 (CS23), a novel adhesin of enterotoxigenic Escherichia coli. Infect Immun 80:2791–2801CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rockabrand DM, Shaheen HI, Khalil SB, Peruski LF Jr, Rozmajzl PJ et al (2006) Enterotoxigenic Escherichia coli colonization factor types collected from 1997 to 2001 in US military personnel during operation Bright Star in northern Egypt. Diagn Microbiol Infect Dis 55:9–12CrossRefPubMedGoogle Scholar
  26. 26.
    Peruski LF Jr, Kay BA, El-Yazeed RA, El-Etr SH, Cravioto A et al (1999) Phenotypic diversity of enterotoxigenic Escherichia colistrains from a community-based study of pediatric diarrhea in periurban Egypt. J Clin Microbiol 37:2974–2978Google Scholar
  27. 27.
    Manoil C, Beckwith J (1985) TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A 82:8129–8133CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Patel SK, Dotson J, Allen KP, Fleckenstein JM (2004) Identification and molecular characterization of EatA, an autotransporter protein of enterotoxigenic Escherichia coli. Infect Immun 72:1786–1794CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fleckenstein JM, Roy K, Fischer JF, Burkitt M (2006) Identification of a two-partner secretion locus of enterotoxigenic Escherichia coli. Infect Immun 74:2245–2258CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefPubMedGoogle Scholar
  31. 31.
    Luo Q, Qadri F, Kansal R, Rasko DA, Sheikh A, Fleckenstein JM (2015) Conservation and immunogenicity of novel antigens in diverse isolates of enterotoxigenic Escherichia coli. PLoS Negl Trop Dis 9(1), e0003446CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  33. 33.
    De Gregorio E, Rappuoli R (2014) From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol 14:505–514CrossRefPubMedGoogle Scholar
  34. 34.
    Rinaudo CD, Telford JL, Rappuoli R, Seib KL (2009) Vaccinology in the genome era. J Clin Invest 119:2515–2525CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sahl JW, Steinsland H, Redman JC, Angiuoli SV, Nataro JP, Sommerfelt H, Rasko DA (2011) A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals pathovar-specific conservation. Infect Immun 79:950–960CrossRefPubMedGoogle Scholar
  36. 36.
    Allen KP, Randolph MM, Fleckenstein JM (2006) Importance of heat-labile enterotoxin in colonization of the adult mouse small intestine by human enterotoxigenic Escherichia coli strains. Infect Immun 74:869–875CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sheikh A, Luo Q, Roy K, Shabaan S, Kumar P, Qadri F, Fleckenstein JM (2014) Contribution of the highly conserved EaeH surface protein to enterotoxigenic Escherichia colipathogenesis. Infect Immun 82:3657–3666Google Scholar
  38. 38.
    Roy K, Hamilton D, Allen KP, Randolph MP, Fleckenstein JM (2008) The EtpA exoprotein of enterotoxigenic Escherichia colipromotes intestinal colonization and is a protective antigen in an experimental model of murine infection. Infect Immun 76:2106–2112Google Scholar
  39. 39.
    Luo Q, Kumar P, Vickers TJ, Sheikh A, Lewis WG, Rasko DA, Sistrunk J, Fleckenstein JM (2014) Enterotoxigenic Escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infect Immun 82:509–521CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kumar P, Luo Q, Vickers TJ, Sheikh A, Lewis WG, Fleckenstein JM (2014) EatA, an immunogenic protective antigen of enterotoxigenic Escherichia coli, degrades intestinal mucin. Infect Immun 82:500–508CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fleckenstein JM, Holland JT, Hasty DL (2002) Interaction of an outer membrane protein of enterotoxigenic Escherichia coli with cell surface heparan sulfate proteoglycans. Infect Immun 70:1530–1537CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Roy K, Kansal R, Bartels SR, Hamilton DJ, Shaaban S, Fleckenstein JM (2011) Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli. J Biol Chem 286:29771–29779CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fleckenstein JM, Kopecko DJ, Warren RL, Elsinghorst EA (1996) Molecular characterization of the tia invasion locus from enterotoxigenic Escherichia coli. Infect Immun 64:2256–2265PubMedPubMedCentralGoogle Scholar
  44. 44.
    Roy K, Hilliard GM, Hamilton DJ, Luo J, Ostmann MM, Fleckenstein JM (2009) Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature 457:594–598CrossRefPubMedGoogle Scholar
  45. 45.
    Sheikh A, Luo Q, Roy K, Shaaban S, Kumar P, Fleckenstein JM (2014) Contribution of the highly conserved EaeH surface protein to enterotoxigenic Escherichia coli pathogenesis. Infect Immun 82:3657–3666CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Roy K, Hamilton DJ, Fleckenstein JM (2012) Cooperative role of antibodies against heat-labile toxin and the EtpA Adhesin in preventing toxin delivery and intestinal colonization by enterotoxigenic Escherichia coli. Clin Vaccine Immunol 19:1603–1608CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sachdeva G, Kumar K, Jain P, Ramachandran S (2005) SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21:483–491CrossRefPubMedGoogle Scholar
  48. 48.
    Roy K, Bartels S, Qadri F, Fleckenstein JM (2010) Enterotoxigenic Escherichia colielicits immune responses to multiple surface proteins. Infect Immun 78:3027–3035Google Scholar
  49. 49.
    Roy K, Hamilton D, Ostmann MM, Fleckenstein JM (2009) Vaccination with EtpA glycoprotein or flagellin protects against colonization with enterotoxigenic Escherichia coli in a murine model. Vaccine 27:4601–4608CrossRefPubMedGoogle Scholar
  50. 50.
    Harris JA, Roy K, Woo-Rasberry V, Hamilton DJ, Kansal R, Qadri F, Fleckenstein JM (2011) Directed evaluation of enterotoxigenic Escherichia coli autotransporter proteins as putative vaccine candidates. PLoS Negl Trop Dis 5(12), e1428CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Davies DH, Liang X, Hernandez JE, Randall A et al (2005) Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A 102:547–552CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Crompton PD, Kayala MA, Traore B, Kayentao K et al (2010) A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci U S A 107:6958–6963CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liang L, Juarez S, Nga TV, Dunstan S et al (2013) Immune profiling with a Salmonella Typhiantigen microarray identifies new diagnostic biomarkers of human typhoid. Sci Rep 3:1043Google Scholar
  54. 54.
    Lee SJ, Liang L, Juarez S, Nanton MR et al (2012) Identification of a common immune signature in murine and human systemic Salmonellosis. Proc Natl Acad Sci U S A 109:4998–5003CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Felgner PL, Kayala MA, Vigil A, Burk C, Nakajima-Sasaki R et al (2009) A Burkholderia pseudomalleiprotein microarray reveals serodiagnostic and cross-reactive antigens. Proc Natl Acad Sci U S A 106:13499–13504Google Scholar
  56. 56.
    Sack RB (2011) The discovery of cholera-like enterotoxins produced by Escherichia colicausing secretory diarrhoea in humans. Indian J Med Res 133:171–180Google Scholar
  57. 57.
    Sack RB, Gorbach SL, Banwell JG, Jacobs B, Chatterjee BD, Mitra RC (1971) Enterotoxigenic Escherichia coliisolated from patients with severe cholera-like disease. J Infect Dis 123:378–385Google Scholar
  58. 58.
    Riddle MS, Savarino SJ (2013) Moving beyond a heat-labile enterotoxin-based vaccine against enterotoxigenic Escherichia coli. Lancet Infect Dis 14:174–175CrossRefPubMedGoogle Scholar
  59. 59.
    Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T et al (2014) PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42(Web Server issue):W337–W343CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  61. 61.
    Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356CrossRefPubMedGoogle Scholar
  62. 62.
    Bendtsen JD, Kiemer L, Fausboll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5:58CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13:1402–1406CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    He Y, Xiang Z, Mobley HL (2010) Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol 2010:297505PubMedPubMedCentralGoogle Scholar
  66. 66.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10:154CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Minkin I, Pham H, Starostina E, Vyahhi N, Pham S (2013) C-Sibelia: an easy-to-use and highly accurate tool for bacterial genome comparison. F1000Res 2:258PubMedPubMedCentralGoogle Scholar
  70. 70.
    Finn RD, Bateman A, Clements J, Coggill P et al (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230CrossRefPubMedGoogle Scholar
  71. 71.
    Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41(Database issue):D348–D352CrossRefPubMedGoogle Scholar
  72. 72.
    Grozdanov L, Raasch C, Schulze J, Sonnenborn U et al (2004) Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol 186:5432–5441CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Oshima K, Toh H, Ogura Y, Sasamoto H, Morita H et al (2008) Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult. DNA Res 15:375–386CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Toh H, Oshima K, Toyoda A, Ogura Y, Ooka T et al (2010) Complete genome sequence of the wild-type commensal Escherichia colistrain SE15, belonging to phylogenetic group B2. J Bacteriol 192:1165–1166Google Scholar
  75. 75.
    de Muinck EJ, Lagesen K, Afset JE, Didelot X et al (2013) Comparisons of infant Escherichia coliisolates link genomic profiles with adaptation to the ecological niche. BMC Genomics 14:81Google Scholar
  76. 76.
    Peterson MD, Mooseker MS (1992) Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci 102(Pt 3):581–600PubMedGoogle Scholar
  77. 77.
    Tom BH, Rutzky LP, Jakstys MM, Oyasu R, Kaye CI, Kahan BD (1976) Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro 12:180–191CrossRefPubMedGoogle Scholar
  78. 78.
    Dharmsathaphorn K, McRoberts JA, Mandel KG, Tisdale LD, Masui H (1984) A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol 246(2 Pt 1):G204–G208PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Department of MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Molecular Microbiology and Molecular Pathogenesis Program, Division of Biology and Biomedical SciencesWashington University School of MedicineSt. LouisUSA
  3. 3.Medicine Service, Veterans Affairs Medical CenterSt. LouisUSA
  4. 4.Department of Microbiology and Immunology, Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations