Assessment of In Vivo siRNA Delivery in Cancer Mouse Models

  • Hiroto Hatakeyama
  • Sherry Y. Wu
  • Lingegowda S. Mangala
  • Gabriel Lopez-Berestein
  • Anil K. Sood
Part of the Methods in Molecular Biology book series (MIMB, volume 1402)

Abstract

RNA interference (RNAi) has rapidly become a powerful tool for target discovery and therapeutics. Small interfering RNAs (siRNAs) are highly effective in mediating sequence-specific gene silencing. However, the major obstacle for using siRNAs as cancer therapeutics is their systemic delivery from the administration site to target cells in vivo. This chapter describes approaches to deliver siRNA effectively for cancer treatment and discusses in detail the current methods to assess pharmacokinetics and biodistribution of siRNAs in vivo.

Key words

siRNA Ovarian cancer Delivery Cancer therapy Stem-loop RT-PCR 

References

  1. 1.
    Gondo Y (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9:803–810CrossRefPubMedGoogle Scholar
  2. 2.
    Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67CrossRefPubMedGoogle Scholar
  3. 3.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  4. 4.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefPubMedGoogle Scholar
  5. 5.
    Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63:152–160CrossRefPubMedGoogle Scholar
  6. 6.
    Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977CrossRefPubMedGoogle Scholar
  7. 7.
    Wu SY, Lopez-Berestein G, Calin GA, Sood AK (2014) RNAi therapies: drugging the undruggable. Sci Transl Med 6:240ps7CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMedGoogle Scholar
  9. 9.
    McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725CrossRefPubMedGoogle Scholar
  10. 10.
    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M et al (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823CrossRefPubMedGoogle Scholar
  11. 11.
    Kim HS, Han HD, Armaiz-Pena GN, Stone RL, Nam EJ, Lee JW et al (2011) Functional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 17:1713–1721CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gharpure KM, Chu KS, Bowerman CJ, Miyake T, Pradeep S, Mangala SL et al (2014) Metronomic docetaxel in PRINT nanoparticles and EZH2 silencing have synergistic antitumor effect in ovarian cancer. Mol Cancer Ther 13:1750–1757CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wu SY, Yang X, Gharpure KM, Hatakeyama H, Egli M, McGuire MH et al (2014) 2′-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nat Commun 5:3459PubMedPubMedCentralGoogle Scholar
  14. 14.
    Han HD, Song CK, Park YS, Noh KH, Kim JH, Hwang T et al (2008) A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 350:27–34CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang HM, Chen SR, Cai YQ, Richardson TE, Driver LC, Lopez-Berestein G et al (2009) Signaling mechanisms mediating muscarinic enhancement of GABAergic synaptic transmission in the spinal cord. Neuroscience 158:1577–1588CrossRefPubMedGoogle Scholar
  16. 16.
    Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225CrossRefPubMedGoogle Scholar
  17. 17.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cheng A, Li M, Liang Y, Wang Y, Wong L, Chen C et al (2009) Stem-loop RT-PCR quantification of siRNAs in vitro and in vivo. Oligonucleotides 19:203–208CrossRefPubMedGoogle Scholar
  19. 19.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hiroto Hatakeyama
    • 1
  • Sherry Y. Wu
    • 1
  • Lingegowda S. Mangala
    • 1
    • 2
  • Gabriel Lopez-Berestein
    • 2
    • 3
    • 4
  • Anil K. Sood
    • 1
    • 2
    • 4
  1. 1.Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer Center (MDACC)HoustonUSA
  2. 2.Center for RNA Interference and Non-Coding RNAsThe University of Texas MD Anderson Cancer Center (MDACC)HoustonUSA
  3. 3.Department of Experimental TherapeuticsThe University of Texas MDAnderson Cancer Center (MDACC)HoustonUSA
  4. 4.Department of Cancer BiologyThe University of Texas MDAnderson Cancer Center (MDACC)HoustonUSA

Personalised recommendations