Facile Synthetic Access to Glycopeptide Antibiotic Precursor Peptides for the Investigation of Cytochrome P450 Action in Glycopeptide Antibiotic Biosynthesis

  • Clara Brieke
  • Veronika Kratzig
  • Madeleine Peschke
  • Max J. CryleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1401)


The glycopeptide antibiotics are an important class of complex, medically relevant peptide natural products. Given that the production of such compounds all stems from in vivo biosynthesis, understanding the mechanisms of the natural assembly system—consisting of a nonribosomal-peptide synthetase machinery (NRPS) and further modifying enzymes—is vital. In order to address the later steps of peptide biosynthesis, which are catalyzed by Cytochrome P450s that interact with the peptide-producing nonribosomal peptide synthetase, peptide substrates are required: these peptides must also be in a form that can be conjugated to carrier protein domains of the nonribosomal peptide synthetase machinery. Here, we describe a practical and effective route for the solid phase synthesis of glycopeptide antibiotic precursor peptides as their Coenzyme A (CoA) conjugates to allow enzymatic conjugation to carrier protein domains. This route utilizes Fmoc-chemistry suppressing epimerization of racemization-prone aryl glycine derivatives and affords high yields and excellent purities, requiring only a single step of simple solid phase extraction for chromatographic purification. With this, comprehensive investigations of interactions between various NRPS-bound substrates and Cytochrome P450s are enabled.

Key words

Glycopeptide antibiotics Solid phase peptide synthesis Coenzyme A Bio-conjugation Nonribosomal peptide synthetase Cytochrome P450 


  1. 1.
    Hur GH, Vickery CR, Burkart MD (2012) Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 29:1074–1098CrossRefPubMedGoogle Scholar
  2. 2.
    Yim G, Thaker MN, Koteva K et al (2014) Glycopeptide antibiotic biosynthesis. J Antibiot 67:31–41CrossRefPubMedGoogle Scholar
  3. 3.
    Cryle MJ, Brieke C, Haslinger K (2014) Oxidative transformations of amino acids and peptides catalysed by Cytochromes P450. In: Farkas E, Ryadnov M (eds) Amino acids, peptides and proteins, vol 38. Royal Society of Chemistry, Cambridge, pp 1–36CrossRefGoogle Scholar
  4. 4.
    Cryle MJ, Schlichting I (2008) Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450BioI-ACP complex. Proc Natl Acad Sci U S A 105:15696–15701PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Haslinger K, Brieke C, Uhlmann S et al (2014) The structure of a transient complex of a nonribosomal peptide synthetase and a cytochrome P450 monooxygenase. Angew Chem Int Ed 53:8518–8522CrossRefGoogle Scholar
  6. 6.
    Süssmuth RD, Pelzer S, Nicholson G et al (1999) New advances in the biosynthesis of glycopeptide antibiotics of the vancomycin type from Amycolatopsis mediterranei. Angew Chem Int Ed 38:1976–1979CrossRefGoogle Scholar
  7. 7.
    Bischoff D, Pelzer S, Holtzel A et al (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics—new insights into the cyclization steps. Angew Chem Int Ed 40:1693–1696CrossRefGoogle Scholar
  8. 8.
    Bischoff D, Pelzer S, Bister B et al (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics—the order of the cyclization steps. Angew Chem Int Ed 40:4688–4691CrossRefGoogle Scholar
  9. 9.
    Hadatsch B, Butz D, Schmiederer T et al (2007) The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of P450 mono-oxygenases to side chain cyclizations of glycopeptide A47934. Chem Biol 14:1078–1089CrossRefPubMedGoogle Scholar
  10. 10.
    Stegmann E, Pelzer S, Bischoff D et al (2006) Genetic analysis of the balhimycin (vancomycin-type) oxygenase genes. J Biotechnol 124:640–653CrossRefPubMedGoogle Scholar
  11. 11.
    Haslinger K, Peschke M, Brieke C et al (2015) X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature. 521:105–109Google Scholar
  12. 12.
    Woithe K, Geib N, Zerbe K et al (2007) Oxidative phenol coupling reactions catalyzed by OxyB: a cytochrome P450 from the vancomycin producing organism. Implications for vancomycin biosynthesis. J Am Chem Soc 129:6887–6895CrossRefPubMedGoogle Scholar
  13. 13.
    Schmartz PC, Wölfel K, Zerbe K et al (2012) Substituent effects on the phenol coupling reaction catalyzed by the vancomycin biosynthetic P450 enzyme OxyB. Angew Chem Int Ed 51:11468–11472CrossRefGoogle Scholar
  14. 14.
    Brieke C, Kratzig V, Haslinger K et al (2015) Rapid access to glycopeptide antibiotic precursor peptides coupled with cytochrome P450-mediated catalysis: towards a biomimetic synthesis of glycopeptide antibiotics. Org Biomol Chem 13:2012–2021CrossRefPubMedGoogle Scholar
  15. 15.
    Quadri LEN, Weinreb PH, Lei M et al (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37:1585–1595CrossRefPubMedGoogle Scholar
  16. 16.
    Vitali F, Zerbe K, Robinson JA (2003) Production of vancomycin aglycone conjugated to a peptide carrier domain derived from a biosynthetic non-ribosomal peptide synthetase. Chem Commun 21:2718–2719CrossRefGoogle Scholar
  17. 17.
    Nicolaou KC, Boddy CNC, Bräse S et al (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed 38:2096–2152CrossRefGoogle Scholar
  18. 18.
    Freund E, Robinson JA (1999) Solid-phase synthesis of a putative heptapeptide intermediate in vancomycin biosynthesis. Chem Commun 24:2509–2510CrossRefGoogle Scholar
  19. 19.
    Bo Li D, Robinson JA (2005) An improved solid-phase methodology for the synthesis of putative hexa- and heptapeptide intermediates in vancomycin biosynthesis. Org Biomol Chem 3:1233–1239CrossRefPubMedGoogle Scholar
  20. 20.
    Brieke C, Cryle MJ (2014) A facile Fmoc solid phase synthesis strategy to access epimerization-prone biosynthetic intermediates of glycopeptide antibiotics. Org Lett 16:2454–2457CrossRefPubMedGoogle Scholar
  21. 21.
    Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed 47: 6851–6855CrossRefGoogle Scholar
  22. 22.
    Dettner F, Hänchen A, Schols D et al (2009) Total synthesis of the antiviral peptide antibiotic feglymycin. Angew Chem Int Ed 48: 1856–1861CrossRefGoogle Scholar
  23. 23.
    Davidsen JM, Bartley DM, Townsend CA (2013) Non-ribosomal propeptide precursor in nocardicin A biosynthesis predicted from adenylation domain specificity dependent on the MbtH family protein NocI. J Am Chem Soc 135:1749–1759PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Haslinger K, Maximowitsch E, Brieke C et al (2014) Cytochrome P450 OxyBtei catalyzes the first phenolic coupling step in teicoplanin biosynthesis. ChemBioChem 15:2719–2728CrossRefPubMedGoogle Scholar
  25. 25.
    Sunbul M, Marshall NJ, Zou Y et al (2009) Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase. J Mol Biol 387:883–898CrossRefPubMedGoogle Scholar
  26. 26.
    Bell SG, Tan ABH, Johnson EOD et al (2010) Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol Biosyst 6:206–214CrossRefPubMedGoogle Scholar
  27. 27.
    Zerbe K, Pylypenko O, Vitali F et al (2002) Crystal structure of OxyB, a cytochrome P450 implicated in an oxidative phenol coupling reaction during vancomycin biosynthesis. J Mol Biol 277:47476–47485Google Scholar
  28. 28.
    Dordine RL, Paneth P, Anderson VE (1995) 13C NMR and 1H-1H NOEs of coenzyme-A: conformation of the pantoic acid moiety. Bioorg Chem 23:169–181CrossRefGoogle Scholar
  29. 29.
    Bogomolovas J, Simon B, Sattler M et al (2009) Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expr Purif 64:16–23CrossRefPubMedGoogle Scholar
  30. 30.
    Bell SG, Xu F, Johnson EOD et al (2010) Protein recognition in ferredoxin-P450 electron transfer in the class I CYP199A2 system from Rhodopseudomonas palustris. J Biol Inorg Chem 15:315–328CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Clara Brieke
    • 1
  • Veronika Kratzig
    • 1
  • Madeleine Peschke
    • 1
  • Max J. Cryle
    • 1
    Email author
  1. 1.Department of Biomolecular MechanismsMax Planck Institute for Medical ResearchHeidelbergGermany

Personalised recommendations