RNA-Seq Analysis to Measure the Expression of SINE Retroelements

  • Ángel Carlos RománEmail author
  • Antonio Morales-Hernández
  • Pedro M. Fernández-Salguero
Part of the Methods in Molecular Biology book series (MIMB, volume 1400)


The intrinsic features of retroelements, like their repetitive nature and disseminated presence in their host genomes, demand the use of advanced methodologies for their bioinformatic and functional study. The short length of SINE (short interspersed elements) retrotransposons makes such analyses even more complex. Next-generation sequencing (NGS) technologies are currently one of the most widely used tools to characterize the whole repertoire of gene expression in a specific tissue. In this chapter, we will review the molecular and computational methods needed to perform NGS analyses on SINE elements. We will also describe new methods of potential interest for researchers studying repetitive elements. We intend to outline the general ideas behind the computational analyses of NGS data obtained from SINE elements, and to stimulate other scientists to expand our current knowledge on SINE biology using RNA-seq and other NGS tools.

Key words

SINE Retrotransposon RNA-seq Next-generation sequencing Bioinformatics 


  1. 1.
    Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465CrossRefPubMedGoogle Scholar
  2. 2.
    Bennett EA, Keller H, Mills RE et al (2008) Active Alu retrotransposons in the human genome. Genome Res 18:1875–1883PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Roman AC, Benitez DA, Carvajal-Gonzalez JM et al (2008) Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo. Proc Natl Acad Sci U S A 105:1632–1637PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Wang T, Zeng J, Lowe CB et al (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci U S A 104:18613–18618PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Borchert GM, Holton NW, Williams JD et al (2011) Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements 1:8–17PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Gu TJ, Yi X, Zhao XW et al (2009) Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 10:563PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9, e1003234PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Jacques PE, Jeyakani J, Bourque G (2013) The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9, e1003504PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28:433–434CrossRefPubMedGoogle Scholar
  10. 10.
    Weiner AM (1980) An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome. Cell 22:209–218CrossRefPubMedGoogle Scholar
  11. 11.
    Deininger PL, Jolly DJ, Rubin CM et al (1981) Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol 151:17–33CrossRefPubMedGoogle Scholar
  12. 12.
    Rubin CM, Houck CM, Deininger PL et al (1980) Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature 284:372–374CrossRefPubMedGoogle Scholar
  13. 13.
    Kramerov DA, Grigoryan AA, Ryskov AP et al (1979) Long double-stranded sequences (dsRNA-B) of nuclear pre-mRNA consist of a few highly abundant classes of sequences: evidence from DNA cloning experiments. Nucleic Acids Res 6:697–713PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Okada N (1991) SINEs. Curr Opin Genet Dev 1:498–504CrossRefPubMedGoogle Scholar
  15. 15.
    Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310:1–26CrossRefPubMedGoogle Scholar
  16. 16.
    Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94:1872–1877PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48CrossRefPubMedGoogle Scholar
  18. 18.
    Adeniyi-Jones S, Zasloff M (1985) Transcription, processing and nuclear transport of a B1 Alu RNA species complementary to an intron of the murine alpha-fetoprotein gene. Nature 317:81–84CrossRefPubMedGoogle Scholar
  19. 19.
    Ichiyanagi K, Li Y, Watanabe T et al (2011) Locus- and domain-dependent control of DNA methylation at mouse B1 retrotransposons during male germ cell development. Genome Res 21:2058–2066PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543CrossRefPubMedGoogle Scholar
  21. 21.
    Kim W, Benhamed M, Servet C et al (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19:899–909CrossRefPubMedGoogle Scholar
  22. 22.
    Kaneko H, Dridi S, Tarallo V et al (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471:325–330PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12:323PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10:71–73PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  27. 27.
    Maraia RJ, Driscoll CT, Bilyeu T et al (1993) Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol 13:4233–4241PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ángel Carlos Román
    • 1
    Email author
  • Antonio Morales-Hernández
    • 2
  • Pedro M. Fernández-Salguero
    • 2
  1. 1.Champalimaud Neuroscience Programme, Champalimaud Center for the UnkownLisbonPortugal
  2. 2.Departamento de Bioquimica y Biologia Molecular, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain

Personalised recommendations