L1 Retrotransposition in Neural Progenitor Cells

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1400)

Abstract

Long interspersed nucleotide element 1 (LINE-1 or L1) is a family of non-LTR retrotransposons that can replicate and reintegrate into the host genome. L1s have considerably influenced mammalian genome evolution by retrotransposing during germ cell development or early embryogenesis, leading to massive genome expansion. For many years, L1 retrotransposons were viewed as a selfish DNA parasite that had no contribution in somatic cells. Historically, L1s were thought to only retrotranspose during gametogenesis and in neoplastic processes, but recent studies have shown that L1s are extremely active in the mouse, rat, and human neuronal progenitor cells (NPCs). These de novo L1 insertions can impact neuronal transcriptional expression, creating unique transcriptomes of individual neurons, possibly contributing to the uniqueness of the individual cognition and mental disorders in humans.

Key words

LINE-1 L1 Retrotransposition Neural stem cells Neural progenitor cells Somatic mosaicism Brain 

References

  1. 1.
    Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910CrossRefPubMedGoogle Scholar
  2. 2.
    Muotri AR, Marchetto MC, Coufal NG, Gage FH (2007) The necessary junk: new functions for transposable elements. Hum Mol Genet 16(Spec No. 2):R159–R167. doi:10.1093/hmg/ddm196, 16/R2/R159 [pii]CrossRefPubMedGoogle Scholar
  3. 3.
    Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N, Gerton GL, Kazazian HH Jr (2002) A mouse model of human L1 retrotransposition. Nat Genet 32:655–660CrossRefPubMedGoogle Scholar
  4. 4.
    Prak ET, Dodson AW, Farkash EA, Kazazian HH Jr (2003) Tracking an embryonic L1 retrotransposition event. Proc Natl Acad Sci U S A 100:1832–1837PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927CrossRefPubMedGoogle Scholar
  6. 6.
    Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165CrossRefPubMedGoogle Scholar
  7. 7.
    Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429:268–274CrossRefPubMedGoogle Scholar
  8. 8.
    Muotri AR, Gage FH (2006) Generation of neuronal variability and complexity. Nature 441:1087–1093. doi:10.1038/nature04959, nature04959 [pii]CrossRefPubMedGoogle Scholar
  9. 9.
    Freeman JD, Goodchild NL, Mager DL (1994) A modified indicator gene for selection of retrotransposition events in mammalian cells. Biotechniques 17:46, 48-49, 52PubMedGoogle Scholar
  10. 10.
    Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131. doi:10.1038/nature08248, nature08248 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446. doi:10.1038/nature09544, nature09544 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Muotri AR, Zhao C, Marchetto MC, Gage FH (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19:1002–1007. doi:10.1002/hipo.20564 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH, O’Shea KS, Moran JV (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16:1569–1577CrossRefPubMedGoogle Scholar
  14. 14.
    Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y, Neijens H, Roos D, Kazazian HH Jr (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 71:327–336PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Ostertag EM, Prak ET, DeBerardinis RJ, Moran JV, Kazazian HH Jr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28:1418–1423PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192CrossRefPubMedGoogle Scholar
  17. 17.
    Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539. doi:10.1016/j.cell.2010.10.016 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Cellular & Molecular Medicine, Stem Cell ProgramUniversity of California San Diego, School of Medicine, Pediatrics/Rady Children’s Hospital San DiegoLa JollaUSA

Personalised recommendations