A Targeted Q-PCR-Based Method for Point Mutation Testing by Analyzing Circulating DNA for Cancer Management Care

Part of the Methods in Molecular Biology book series (MIMB, volume 1392)

Abstract

Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex® and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex® has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex® test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex® is limited to the mutational status of known hotspot mutation; it is a “targeted approach.” However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics, therapeutic monitoring, and follow-up of cancer patients expanding the scope of personalized cancer medicine.

Key words

Circulating DNA Cell-free DNA Plasma Mutation Q-PCR Cancer KRAS BRAF Sensitivity Diagnostic 

References

  1. 1.
    Mandel P, Metais P (1948) C R Seances Soc Biol Fil 142(3–4):241–243PubMedGoogle Scholar
  2. 2.
    Leon SA, Shapiro B, Sklaroff DM, Yaros MJ (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650PubMedGoogle Scholar
  3. 3.
    Stroun M, Anker P, Lyautey J, Lederrey C, Maurice PA (1987) Isolation and characterization of DNA of cancer patients. Eur J Cancer Clin Oncol 23(6):707–712CrossRefPubMedGoogle Scholar
  4. 4.
    Lo YMD, Chan KCA, Sun H, Chen EZ, Jiang PY, Lun FMF et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2(61):61ra91CrossRefPubMedGoogle Scholar
  5. 5.
    Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer – a survey. Biochim Biophys Acta 1775(1):181–232PubMedGoogle Scholar
  6. 6.
    van der Vaart M, Pretorius PJ (2008) Characterization of circulating DNA in healthy human plasma. Clin Chim Acta 395(1–2):186CrossRefPubMedGoogle Scholar
  7. 7.
    Jung K, Fleischhacker M, Rabien A (2010) Cell-free DNA in the blood as a solid tumor biomarker--a critical appraisal of the literature. Clin Chim Acta 411(21–22):1611–1624CrossRefPubMedGoogle Scholar
  8. 8.
    Schmidt B, Weickmann S, Witt C, Fleischhacker M (2008) Integrity of cell-free plasma DNA in patients with lung cancer and nonmalignant lung disease. Ann N Y Acad Sci 1137:207–213CrossRefPubMedGoogle Scholar
  9. 9.
    Ellinger J, Wittkarnp V, Albers P, Perabo FGE, Mueller SC, von Ruecker A et al (2009) Cell-Free Circulating DNA: Diagnostic Value in Patients With Testicular Germ Cell Cancer. J Urol 181(1):363–371CrossRefPubMedGoogle Scholar
  10. 10.
    Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M et al (2010) Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res 38(18):6159–6175PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Mouliere F, Robert B, Peyrotte E, Del Rio M, Ychou M, Molina F et al (2011) High fragmentation characterizes tumour-derived circulating DNA. Plos One 6(9):e23418PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Schwarzenbach H, Hoon DSB, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11(6):426–437CrossRefPubMedGoogle Scholar
  13. 13.
    Mouliere F, El Messaoudi S, Pang D, Dritschilo A, Thierry AR (2014) Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol 8(5):927–941CrossRefPubMedGoogle Scholar
  14. 14.
    Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209CrossRefPubMedGoogle Scholar
  16. 16.
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra24PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Mouliere F, El Messaoudi S, Gongora C, Guedj AS, Robert B, Del Rio M et al (2013) Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol 6(3):319–328PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Thierry AR, Molina F (2011) Analytical methods for cell free nucleic acids and applications, PCT WO 2012/028747, Sept 5Google Scholar
  19. 19.
    El Messaoudi S, Rolet F, Mouliere F, Thierry AR (2013) Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 424:222–230CrossRefPubMedGoogle Scholar
  20. 20.
    Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622CrossRefPubMedGoogle Scholar
  21. 21.
    Taly V, Pekin D, El Abed A et al (2012) Detecting biomarkers with microdroplet technology. Trends Mol Med 18(7):405–416CrossRefPubMedGoogle Scholar
  22. 22.
    Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10(10):1003–1005PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20(4):430–435CrossRefPubMedGoogle Scholar
  24. 24.
    Mouliere F, Thierry AR, Larroque C (2015) Detection of genetic alterations by nucleic acid analysis: use of PCR and Mass spectroscopy-based methods. In: Gahan P (ed) Circulating nucleic acids in early diagnosis, prognosis and treatment monitoring. Springer, DordrechtGoogle Scholar
  25. 25.
    Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486(7404):532–536PubMedCentralPubMedGoogle Scholar
  26. 26.
    Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut de Recherche en Cancérologie de Montpellier (IRCM)MontpellierFrance
  2. 2.INSERM, U1194MontpellierFrance
  3. 3.Université de MontpellierMontpellierFrance
  4. 4.Institut Régional du Cancer de MontpellierMontpellierFrance
  5. 5.DiaDx SARLMontpellierFrance

Personalised recommendations