Assessing Tolerance to Heavy-Metal Stress in Arabidopsis thaliana Seedlings

  • Estelle Remy
  • Paula Duque
Part of the Methods in Molecular Biology book series (MIMB, volume 1398)


Heavy-metal soil contamination is one of the major abiotic stress factors that, by negatively affecting plant growth and development, severely limit agricultural productivity worldwide. Plants have evolved various tolerance and detoxification strategies in order to cope with heavy-metal toxicity while ensuring adequate supply of essential micronutrients at the whole-plant as well as cellular levels. Genetic studies in the model plant Arabidopsis thaliana have been instrumental in elucidating such mechanisms. The root assay constitutes a very powerful and simple method to assess heavy-metal stress tolerance in Arabidopsis seedlings. It allows the simultaneous determination of all the standard growth parameters affected by heavy-metal stress (primary root elongation, lateral root development, shoot biomass, and chlorophyll content) in a single experiment. Additionally, this protocol emphasizes the tips and tricks that become particularly useful when quantifying subtle alterations in tolerance to a given heavy-metal stress, when simultaneously pursuing a large number of plant lines, or when testing sensitivity to a wide range of heavy metals for a single line.

Key words

Arabidopsis thaliana Chlorophyll content Heavy-metal stress tolerance Lateral root development Primary root elongation Root assay Seedlings Shoot biomass 



We thank Raquel Carvalho for critical reading of the manuscript. This work was supported by Fundação para a Ciência e a Tecnologia (Grant EXPL/AGR-PRO/1013/2013 and postdoctoral fellowship SFRH/BPD/44640/2008 awarded to Estelle Remy). Funding from the research unit GREEN-it “Bioresources for Sustainability” (UID/Multi/04551/2013) is also acknowledged.


  1. 1.
    Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11CrossRefPubMedGoogle Scholar
  2. 2.
    Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181. doi: 10.1016/j.plantsci.2010.08.016 CrossRefPubMedGoogle Scholar
  3. 3.
    Marschner P (ed) (2012) Mineral nutrition of higher plants, 3rd edn. Academic, LondonGoogle Scholar
  4. 4.
    Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486CrossRefPubMedGoogle Scholar
  5. 5.
    Puig S, Penarrubia L (2009) Placing metal micronutrients in context: transport and distribution in plants. Curr Opin Plant Biol 12(3):299–306. doi: 10.1016/j.pbi.2009.04.008 CrossRefPubMedGoogle Scholar
  6. 6.
    Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719. doi: 10.1016/j.biochi.2006.07.003 CrossRefPubMedGoogle Scholar
  7. 7.
    Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179. doi: 10.1016/j.sajb.2009.10.007 CrossRefGoogle Scholar
  8. 8.
    Hossein MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot :Article ID 872875. doi: 10.1155/2012/872875
  9. 9.
    Müller AJ (1964) Keimwurzeltest zur Bewertung des somatischen Strahlenschadens bei Arabidopsis. Kulturpflanze 12(1):237–255CrossRefGoogle Scholar
  10. 10.
    Contant RB (1966) Arabidopsis seedling growth for radiobiological studies. Arabid Inf Serv 3:36–37Google Scholar
  11. 11.
    Howden R, Cobbett CS (1992) Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiol 100(1):100–107PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa-Correia I, Duque P (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195(2):356–371. doi: 10.1111/j.1469-8137.2012.04167.x CrossRefPubMedGoogle Scholar
  13. 13.
    Remy E, Cabrito TR, Batista RA, Hussein MA, Teixeira MC, Athanasiadis A, Sa-Correia I, Duque P (2014) Intron retention in the 5′ UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in Arabidopsis. PLoS Genet 10(5):e1004375. doi: 10.1371/journal.pgen.1004375 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Remy E, Cabrito TR, Batista RA, Teixeira MC, Sa-Correia I, Duque P (2015) The major facilitator superfamily transporter ZIFL2 modulates cesium and potassium homeostasis in Arabidopsis. Plant Cell Physiol 56(1):148–162. doi: 10.1093/pcp/pcu157 CrossRefPubMedGoogle Scholar
  15. 15.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  16. 16.
    MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Plant Molecular BiologyInstituto Gulbenkian de CiênciaOeirasPortugal

Personalised recommendations