Environmental Responses in Plants pp 3-9

Part of the Methods in Molecular Biology book series (MIMB, volume 1398) | Cite as

Hydrotropism: Analysis of the Root Response to a Moisture Gradient

  • Regina Antoni
  • Daniela Dietrich
  • Malcolm J. Bennett
  • Pedro L. Rodriguez
Protocol

Abstract

Hydrotropism is a genuine response of roots to a moisture gradient to avoid drought. An experimental system for the induction of hydrotropic root response in petri dishes was designed by pioneering groups in the field. This system uses split agar plates containing an osmolyte only in a region of the plate in order to generate a water potential gradient. Arabidopsis seedlings are placed on the MS agar plate so that their root tips are near the junction between plain MS medium and the region supplemented with the osmolyte. This elicits a hydrotropic response in Arabidopsis roots that can be measured as the root curvature angle.

Key words

Hydrotropism Water potential gradient Root curvature angle Moisture gradient Root growth Sorbitol ABA Arabidopsis 

References

  1. 1.
    Verslues PE, Agarwal M, Katiyar-Agarwal S et al (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539CrossRefPubMedGoogle Scholar
  2. 2.
    Roy R, Bassham DC (2014) Root growth movements: waving and skewing. Plant Sci 221:42–47CrossRefPubMedGoogle Scholar
  3. 3.
    Jaffe MJ, Takahashi H, Biro RL (1985) A pea mutant for the study of hydrotropism in roots. Science 230:445–447CrossRefPubMedGoogle Scholar
  4. 4.
    Eapen D, Barroso ML, Campos ME et al (2003) A no hydrotropic response (nhr1) root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Kobayashi A, Takahashi A, Kakimoto Y et al (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Takahashi N, Goto N, Okada K et al (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–211CrossRefPubMedGoogle Scholar
  7. 7.
    Miyazawa Y, Takahashi A, Kobayashi A et al (2009) GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149:835–840PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Saucedo M, Ponce G, Campos M et al (2012) An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin. J Exp Bot 63:3587–3601PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Antoni R, Gonzalez-Guzman M, Rodriguez L et al (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931–941PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and Bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  11. 11.
    Wells DM, French AP, Naeem A et al (2012) Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Philos Trans R Soc B: Biol Sci 367:2245CrossRefGoogle Scholar
  12. 12.
    Moriwaki T, Miyazawa Y, Fujii N et al (2012) Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. Plant Cell Environ 35:1359–1368CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Regina Antoni
    • 1
  • Daniela Dietrich
    • 1
  • Malcolm J. Bennett
    • 1
  • Pedro L. Rodriguez
    • 2
  1. 1.Centre for Plant Integrative BiologyUniversity of NottinghamNottinghamUK
  2. 2.Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations