MicroRNAs and Cancer Drug Resistance

  • Bruno Costa Gomes
  • José Rueff
  • António Sebastião Rodrigues
Part of the Methods in Molecular Biology book series (MIMB, volume 1395)


The discovery of small regulatory noncoding RNAs revolutionized our thinking on gene regulation. The class of microRNAs (miRs), a group of small noncoding RNAs (20–22 nt in length) that bind imperfectly to the 3′-untranslated region of target mRNA, has been insistently implicated in several pathological conditions including cancer. Indeed, major hallmarks of cancer, such as cell differentiation, cell proliferation, cell cycle, cell survival, and cell invasion, has been described as being regulated by miRs. Recent studies have also implicated miRs in cancer drug resistance. Regardless of the several studies done until now, drug resistance still is a burden for cancer therapy and patients’ outcome, often resulting in more aggressive tumors that tend to metastasize to distant organs. Hence, with this review, we aim to summarize the miRs that influence molecular pathways that are involved in cancer drug resistance, such as drug metabolism, drug influx/efflux, DNA damage response (DDR), epithelial-to-mesenchymal transition (EMT), and cancer stem cells.

Key words

MicroRNA Drug resistance Noncoding RNAs Cancer 



This work was supported by grant PEst-OE/SAU/UI0009/2014 from Fundação de Ciência e Tecnologia (FCT). B.C.G. was supported by SFRH/BD/64131/2009 from FCT.


  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  2. 2.
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89PubMedCrossRefGoogle Scholar
  3. 3.
    Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864PubMedCrossRefGoogle Scholar
  4. 4.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73PubMedCrossRefGoogle Scholar
  5. 5.
    Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314PubMedCrossRefGoogle Scholar
  6. 6.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128PubMedCrossRefGoogle Scholar
  7. 7.
    Deng L, Shang L, Bai S, Chen J, He X, Trevino RM, Chen S, Li X, Meng X, Yu B, Wang X, Liu Y, McDermott SP, Ariazi AE, Ginestier C, Ibarra I, Ke J, Luther TK, Clouthier SG, Xu L, Shan G, Song E, Yao H, Hannon GJ, Weiss SJ, Wicha MS, Liu S (2014) MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development. Cancer Res 74(22):6648–6660PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kang IH, Jeong BC, Hur SW, Choi H, Choi SH, Ryu JH, Hwang YC, Koh JT (2014) MicroRNA-302a stimulates osteoblastic differentiation by repressing COUP-TFII expression. J Cell Physiol 230:911–921CrossRefGoogle Scholar
  9. 9.
    Lazare SS, Wojtowicz EE, Bystrykh LV, de Haan G (2014) microRNAs in hematopoiesis. Exp Cell Res 329(2):234–238PubMedCrossRefGoogle Scholar
  10. 10.
    Janaki Ramaiah M, Lavanya A, Honarpisheh M, Zarea M, Bhadra U, Bhadra MP (2014) miR-15/16 complex targets p70S6 kinase1 and controls cell proliferation in MDA-MB-231 breast cancer cells. Gene 552:255–264PubMedCrossRefGoogle Scholar
  11. 11.
    Zhong K, Chen K, Han L, Li B (2014) microRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer 14:703PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lerner M, Lundgren J, Akhoondi S, Jahn A, Ng HF, Akbari Moqadam F, Oude Vrielink JA, Agami R, Den Boer ML, Grander D, Sangfelt O (2011) MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle 10:2172–2183PubMedCrossRefGoogle Scholar
  13. 13.
    Liang LH, He XH (2011) Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy. Acta Pharmacol Sin 32:1311–1320PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zhou L, Zhang WG, Wang DS, Tao KS, Song WJ, Dou KF (2014) MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1. Oncol Rep 32:1734–1740PubMedGoogle Scholar
  15. 15.
    Floyd DH, Zhang Y, Dey BK, Kefas B, Breit H, Marks K, Dutta A, Herold-Mende C, Synowitz M, Glass R, Abounader R, Purow BW (2014) Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS One 9, e96239PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Li R, Yuan W, Mei W, Yang K, Chen Z (2014) MicroRNA 520d-3p inhibits gastric cancer cell proliferation, migration, and invasion by downregulating EphA2 expression. Mol Cell Biochem 396:295–305PubMedCrossRefGoogle Scholar
  17. 17.
    Li W, Zang W, Liu P, Wang Y, Du Y, Chen X, Deng M, Sun W, Wang L, Zhao G, Zhai B (2014) MicroRNA-124 inhibits cellular proliferation and invasion by targeting Ets-1 in breast cancer. Tumour Biol 35(11):10897–10904PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang R, Luo H, Wang S, Chen Z, Hua L, Wang HW, Chen W, Yuan Y, Zhou X, Li D, Shen S, Jiang T, You Y, Liu N, Wang H (2014) miR-622 suppresses proliferation, invasion and migration by directly targeting activating transcription factor 2 in glioma cells. J Neurooncol 121(1):63–72PubMedCrossRefGoogle Scholar
  19. 19.
    Melo SA, Esteller M (2011) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585:2087–2099PubMedCrossRefGoogle Scholar
  20. 20.
    Calin G, Sevignani C, Dumitru C, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Shenouda SK, Alahari SK (2009) MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 28:369–378PubMedCrossRefGoogle Scholar
  22. 22.
    Raychaudhuri M, Schuster T, Buchner T, Malinowsky K, Bronger H, Schwarz-Boeger U, Hofler H, Avril S (2012) Intratumoral heterogeneity of microRNA expression in breast cancer. J Mol Diagn 14:376–384PubMedCrossRefGoogle Scholar
  23. 23.
    Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancers 6:1769–1792PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726PubMedCrossRefGoogle Scholar
  25. 25.
    Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205:275–292PubMedCrossRefGoogle Scholar
  26. 26.
    Rodrigues AS, Dinis J, Gromicho M, Martins C, Laires A, Rueff J (2012) Genomics and cancer drug resistance. Curr Pharm Biotechnol 13:651–673PubMedCrossRefGoogle Scholar
  27. 27.
    Rukov JL, Shomron N (2011) MicroRNA pharmacogenomics: post-transcriptional regulation of drug response. Trends Mol Med 17:412–423PubMedCrossRefGoogle Scholar
  28. 28.
    Manikandan M, Munirajan AK (2014) Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics. Omics 18:142–154PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Urquhart BL, Tirona RG, Kim RB (2007) Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 47:566–578PubMedCrossRefGoogle Scholar
  30. 30.
    Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T (2006) MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66:9090–9098PubMedCrossRefGoogle Scholar
  31. 31.
    Ikemura K, Iwamoto T, Okuda M (2014) MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function. Pharmacol Ther 143:217–224PubMedCrossRefGoogle Scholar
  32. 32.
    Koturbash I, Beland FA, Pogribny IP (2012) Role of microRNAs in the regulation of drug metabolizing and transporting genes and the response to environmental toxicants. Expert Opin Drug Metab Toxicol 8:597–606PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25:1679–1691PubMedCrossRefGoogle Scholar
  34. 34.
    Rendic SP, Guengerich FP (2015) Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of chemicals. Chem Res Toxicol 28(1):38–42PubMedCrossRefGoogle Scholar
  35. 35.
    Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM (2002) Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 30:869–874PubMedCrossRefGoogle Scholar
  36. 36.
    Leung T, Rajendran R, Singh S, Garva R, Krstic-Demonacos M, Demonacos C (2013) Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res 15:R107PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Mohri T, Nakajima M, Fukami T, Takamiya M, Aoki Y, Yokoi T (2010) Human CYP2E1 is regulated by miR-378. Biochem Pharmacol 79:1045–1052PubMedCrossRefGoogle Scholar
  38. 38.
    Pan YZ, Gao W, Yu AM (2009) MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 37:2112–2117PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Duffel MW, Marshal AD, McPhie P, Sharma V, Jakoby WB (2001) Enzymatic aspects of the phenol (aryl) sulfotransferases. Drug Metab Rev 33:369–395PubMedCrossRefGoogle Scholar
  40. 40.
    Mercer KE, Apostolov EO, da Costa GG, Yu X, Lang P, Roberts DW, Davis W, Basnakian AG, Kadlubar FF, Kadlubar SA (2010) Expression of sulfotransferase isoform 1A1 (SULT1A1) in breast cancer cells significantly increases 4-hydroxytamoxifen-induced apoptosis. Int J Mol Epidemiol Genet 1:92–103PubMedPubMedCentralGoogle Scholar
  41. 41.
    Yu X, Dhakal IB, Beggs M, Edavana VK, Williams S, Zhang X, Mercer K, Ning B, Lang NP, Kadlubar FF, Kadlubar S (2010) Functional genetic variants in the 3′-untranslated region of sulfotransferase isoform 1A1 (SULT1A1) and their effect on enzymatic activity. Toxicol Sci 118:391–403PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Moriya Y, Nohata N, Kinoshita T, Mutallip M, Okamoto T, Yoshida S, Suzuki M, Yoshino I, Seki N (2012) Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma. J Hum Genet 57:38–45PubMedCrossRefGoogle Scholar
  43. 43.
    McLellan LI, Wolf CR (1999) Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drug Resist Updat 2:153–164PubMedCrossRefGoogle Scholar
  44. 44.
    Shea TC, Kelley SL, Henner WD (1988) Identification of an anionic form of glutathione transferase present in many human tumors and human tumor cell lines. Cancer Res 48:527–533PubMedGoogle Scholar
  45. 45.
    Sawers L, Ferguson MJ, Ihrig BR, Young HC, Chakravarty P, Wolf CR, Smith G (2014) Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines. Br J Cancer 111:1150–1158PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58PubMedCrossRefGoogle Scholar
  47. 47.
    Kathawala RJ, Gupta P, Ashby CR Jr, Chen Z (2014) The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 18:1–17PubMedCrossRefGoogle Scholar
  48. 48.
    Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42:1007–1017PubMedGoogle Scholar
  49. 49.
    Haenisch S, Werk AN, Cascorbi I (2014) MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol 77:587–596PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gromicho M, Dinis J, Magalhães M, Fernandes A, Tavares P, Laires A, Rueff J, Rodrigues A (2011) Development of Imatinib and Dasatinib resistance: dynamics of the drug transporters expression ABCB1, ABCC1, ABCG2, MVP and SLC22A1. Leuk Lymphoma 52:1980–1990PubMedCrossRefGoogle Scholar
  51. 51.
    Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7:2152–2159PubMedCrossRefGoogle Scholar
  52. 52.
    Chen J, Tian W, Cai H, He H, Deng Y (2012) Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med Oncol 29:2527–2534PubMedCrossRefGoogle Scholar
  53. 53.
    Bao L, Hazari S, Mehra S, Kaushal D, Moroz K, Dash S (2012) Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol 180:2490–2503PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gromicho M, Magalhaes M, Torres F, Dinis J, Fernandes AR, Rendeiro P, Tavares P, Laires A, Rueff J, Sebastiao Rodrigues A (2013) Instability of mRNA expression signatures of drug transporters in chronic myeloid leukemia patients resistant to imatinib. Oncol Rep 29:741–750PubMedGoogle Scholar
  55. 55.
    van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA (2010) MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol 42:1282–1290PubMedCrossRefGoogle Scholar
  56. 56.
    Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, Yang JM (2008) Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76:582–588PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ikemura K, Yamamoto M, Miyazaki S, Mizutani H, Iwamoto T, Okuda M (2013) MicroRNA-145 post-transcriptionally regulates the expression and function of P-glycoprotein in intestinal epithelial cells. Mol Pharmacol 83:399–405PubMedCrossRefGoogle Scholar
  58. 58.
    Xu Y, Ohms SJ, Li Z, Wang Q, Gong G, Hu Y, Mao Z, Shannon MF, Fan JY (2013) Changes in the expression of miR-381 and miR-495 are inversely associated with the expression of the MDR1 gene and development of multi-drug resistance. PLoS One 8, e82062PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Natarajan K, Xie Y, Baer MR, Ross DD (2012) Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 83:1084–1103PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Shiozawa K, Oka M, Soda H, Yoshikawa M, Ikegami Y, Tsurutani J, Nakatomi K, Nakamura Y, Doi S, Kitazaki T, Mizuta Y, Murase K, Yoshida H, Ross DD, Kohno S (2004) Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer 108:146–151PubMedCrossRefGoogle Scholar
  61. 61.
    Selever J, Gu G, Lewis MT, Beyer A, Herynk MH, Covington KR, Tsimelzon A, Dontu G, Provost P, Di Pietro A, Boumendjel A, Albain K, Miele L, Weiss H, Barone I, Ando S, Fuqua SA (2011) Dicer-mediated upregulation of BCRP confers tamoxifen resistance in human breast cancer cells. Clin Cancer Res 17:6510–6521PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Burger H, Foekens JA, Look MP, Meijer-van Gelder ME, Klijn JG, Wiemer EA, Stoter G, Nooter K (2003) RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res 9:827–836PubMedGoogle Scholar
  63. 63.
    Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, Wang Y, Chen Q, Zhao X, Zhou M, Cui Z, Zheng Z, Wang E, Wei M (2013) MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 139:717–730PubMedCrossRefGoogle Scholar
  64. 64.
    Pan YZ, Morris ME, Yu AM (2009) MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75:1374–1379PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, Yu ZJ, Wu HZ, Sun ML, Song ZG, Wei MJ (2013) MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett 339:107–115PubMedCrossRefGoogle Scholar
  66. 66.
    Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, Yu AM (2011) Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol 81:783–792PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 54:95–117PubMedCrossRefGoogle Scholar
  68. 68.
    Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O (2010) Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127:1785–1794PubMedCrossRefGoogle Scholar
  69. 69.
    Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, Wagar N, Yoon Y, Cho HT, Scala S, Shim H (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79:817–824PubMedCrossRefGoogle Scholar
  70. 70.
    Pan YZ, Zhou A, Hu Z, Yu AM (2013) Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1. Drug Metab Dispos 41:1744–1751PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen ZS, Tiwari AK (2011) Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 278:3226–3245PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Xu K, Liang X, Shen K, Cui D, Zheng Y, Xu J, Fan Z, Qiu Y, Li Q, Ni L, Liu J (2012) miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochem J 446:291–300PubMedCrossRefGoogle Scholar
  73. 73.
    McKenna LB, Schug J, Vourekas A, McKenna JB, Bramswig NC, Friedman JR, Kaestner KH (2010) MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology 139:1654–1664, 1664–1651PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Dalmasso G, Nguyen HT, Yan Y, Laroui H, Charania MA, Obertone TS, Sitaraman SV, Merlin D (2011) MicroRNA-92b regulates expression of the oligopeptide transporter PepT1 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 300:G52–G59PubMedCrossRefGoogle Scholar
  75. 75.
    Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA (2011) miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 31:3182–3194PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745PubMedCrossRefGoogle Scholar
  78. 78.
    Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FMG (2015) Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15:166–180PubMedCrossRefGoogle Scholar
  79. 79.
    d'Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522PubMedCrossRefGoogle Scholar
  80. 80.
    Kelley MR, Fishel ML (2008) DNA repair proteins as molecular targets for cancer therapeutics. Anticancer Agents Med Chem 8:417–425PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kelley MR (2011) DNA repair inhibitors: where do we go from here? DNA Repair (Amst) 10:1183–1185CrossRefGoogle Scholar
  82. 82.
    Kelley MR (2012) Future directions with DNA repair inhibitors: a roadmap for disruptive approaches to cancer therapy (Chapter 14). In: Mark RK (ed) DNA repair in cancer therapy. Academic, San Diego, CA, pp 301–310. doi: 10.1016/b978-0-12-384999-1.10014-9 CrossRefGoogle Scholar
  83. 83.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204PubMedCrossRefGoogle Scholar
  84. 84.
    Dinis J, Silva V, Gromicho M, Martins C, Laires A, Tavares P, Rendeiro P, Torres F, Rueff J, Rodrigues A (2012) DNA damage response in imatinib resistant chronic myeloid leukemia K562 cells. Leuk Lymphoma 53:2004–2014PubMedCrossRefGoogle Scholar
  85. 85.
    Rodrigues AS, Gomes BC, Martins C, Gromicho M, Oliveira NG, Guerreiro PS, Rueff J (2013) DNA repair and resistance to cancer therapy. In: Chen C (ed) DNA repair and resistance to cancer therapy, new research directions in DNA repair. Intech. doi:10.5772/53952Google Scholar
  86. 86.
    Hoeijmakers J (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374PubMedCrossRefGoogle Scholar
  87. 87.
    Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485PubMedCrossRefGoogle Scholar
  88. 88.
    Sharma V, Misteli T (2013) Non-coding RNAs in DNA damage and repair. FEBS Lett 587:1832–1839PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, Smilenov LB (2011) Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Oncol Biol Phys 80:549–557PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Pothof J, Verkaik NS, Van IW, Ta VT, van der Horst GT, Jaspers NG, van Gent DC, Hoeijmakers JH, Persengiev SP (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28:2090–2099PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    van Jaarsveld MT, Wouters MD, Boersma AW, Smid M, van Ijcken WF, Mathijssen RH, Hoeijmakers JH, Martens JW, van Laere S, Wiemer EA, Pothof J (2014) DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity. Mol Oncol 8:458–468PubMedCrossRefGoogle Scholar
  92. 92.
    d'Adda di Fagagna F (2014) A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol 24:171–178PubMedCrossRefGoogle Scholar
  93. 93.
    Chowdhury D, Choi YE, Brault ME (2013) Charity begins at home: non-coding RNA functions in DNA repair. Nat Rev Mol Cell Biol 14:181–189PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bottai G, Pasculli B, Calin GA, Santarpia L (2014) Targeting the microRNA-regulating DNA damage/repair pathways in cancer. Expert Opin Biol Ther 14:1667–1683PubMedCrossRefGoogle Scholar
  95. 95.
    Wouters MD, van Gent DC, Hoeijmakers JHJ, Pothof J (2011) MicroRNAs, the DNA damage response and cancer. Mutat Res 717:54–66PubMedCrossRefGoogle Scholar
  96. 96.
    Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116PubMedCrossRefGoogle Scholar
  97. 97.
    Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN, Sadee W (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7:1–9PubMedCrossRefGoogle Scholar
  98. 98.
    Wang Q, Zhong M, Liu W, Li J, Huang J, Zheng L (2011) Alterations of microRNAs in cisplatin-resistant human non-small cell lung cancer cells (A549/DDP). Exp Lung Res 37:427–434PubMedCrossRefGoogle Scholar
  99. 99.
    Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, Sumani KM, Alder H, Amadori D, Patel T, Nuovo GJ, Fishel R, Croce CM (2010) MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci 107:21098–21103PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wang Y, Huang JW, Calses P, Kemp CJ, Taniguchi T (2012) MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res 72:4037–4046PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, Carasi S, Palmieri D, Costinean S, Shapiro CL, Huebner K, Croce CM (2014) Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A 111:4536–4541PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Savage KI, Harkin DP (2015) BRCA1, a ‘complex’ protein involved in the maintenance of genomic stability. FEBS J 282:630–646PubMedCrossRefGoogle Scholar
  103. 103.
    Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, Beech J, Kulshrestha R, Abdelmohsen K, Weinstock DM, Gorospe M, Harris AL, Helleday T, Chowdhury D (2011) miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41:210–220PubMedCrossRefGoogle Scholar
  104. 104.
    Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS, Lidereau R, Mikaelian I, Mazoyer S (2011) Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med 3:279–290PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Li L, Li W (2015) Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther 150:33–46PubMedCrossRefGoogle Scholar
  106. 106.
    Zielinska HA, Bahl A, Holly JM, Perks CM (2015) Epithelial-to-mesenchymal transition in breast cancer: a role for insulin-like growth factor I and insulin-like growth factor-binding protein 3? Breast Cancer (Dove Med Press) 7:9–19Google Scholar
  107. 107.
    Lindsey S, Langhans SA (2014) Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition. Front Oncol 4:358PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chen Y, Sun Y, Chen L, Xu X, Zhang X, Wang B, Min L, Liu W (2013) miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep 7:1579–1584PubMedGoogle Scholar
  109. 109.
    Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM (2013) Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 8, e62334PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X, Zhao J, Gu B, Zheng GX, Yang AG, Jia LT (2014) MiR-200c suppresses TGF-beta signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. Int J Cancer 135:1356–1368PubMedCrossRefGoogle Scholar
  111. 111.
    Izumchenko E, Chang X, Michailidi C, Kagohara L, Ravi R, Paz K, Brait M, Hoque M, Ling S, Bedi A, Sidransky D (2014) The TGFbeta-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res 74:3995–4005PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kitamura K, Seike M, Okano T, Matsuda K, Miyanaga A, Mizutani H, Noro R, Minegishi Y, Kubota K, Gemma A (2014) MiR-134/487b/655 cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther 13:444–453PubMedCrossRefGoogle Scholar
  113. 113.
    Lee CG, McCarthy S, Gruidl M, Timme C, Yeatman TJ (2014) MicroRNA-147 induces a mesenchymal-to-epithelial transition (MET) and reverses EGFR inhibitor resistance. PLoS One 9, e84597PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Jiang L, He D, Yang D, Chen Z, Pan Q, Mao A, Cai Y, Li X, Xing H, Shi M, Chen Y, Bruce IC, Wang T, Jin L, Qi X, Hua D, Jin J, Ma X (2014) MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett 588:2009–2015PubMedCrossRefGoogle Scholar
  115. 115.
    Ma J, Fang B, Zeng F, Ma C, Pang H, Cheng L, Shi Y, Wang H, Yin B, Xia J, Wang Z (2015) Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Oncotarget 6:1740–1749PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143PubMedGoogle Scholar
  117. 117.
    Wiseman DH, Greystoke BF, Somervaille TC (2014) The variety of leukemic stem cells in myeloid malignancy. Oncogene 33:3091–3098PubMedCrossRefGoogle Scholar
  118. 118.
    Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells – what challenges do they pose? Nat Rev Drug Discov 13:497–512PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedCrossRefGoogle Scholar
  120. 120.
    O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  121. 121.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  123. 123.
    Antoniou A, Hebrant A, Dom G, Dumont JE, Maenhaut C (2013) Cancer stem cells, a fuzzy evolving concept: a cell population or a cell property? Cell Cycle 12:3743–3748PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Liu C, Tang DG (2011) MicroRNA regulation of cancer stem cells. Cancer Res 71:5950–5954PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Shimono Y, Zabala M, Cho R, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula S, Chiao E (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Raza U, Zhang JD, Sahin O (2014) MicroRNAs: master regulators of drug resistance, stemness, and metastasis. J Mol Med (Berl) 92:321–336CrossRefGoogle Scholar
  128. 128.
    Yu CC, Chen YW, Chiou GY, Tsai LL, Huang PI, Chang CY, Tseng LM, Chiou SH, Yen SH, Chou MY, Chu PY, Lo WL (2011) MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncol 47:202–210PubMedCrossRefGoogle Scholar
  129. 129.
    Yang YP, Chien Y, Chiou GY, Cherng JY, Wang ML, Lo WL, Chang YL, Huang PI, Chen YW, Shih YH, Chen MT, Chiou SH (2012) Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 33:1462–1476PubMedCrossRefGoogle Scholar
  130. 130.
    Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, Ng I, Man K, Wong N, To KF, Zheng BJ, Lai PB, Lo CM, Chan KW, Guan XY (2010) miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7:694–707PubMedCrossRefGoogle Scholar
  131. 131.
    Xu CX, Xu M, Tan L, Yang H, Permuth-Wey J, Kruk PA, Wenham RM, Nicosia SV, Lancaster JM, Sellers TA, Cheng JQ (2012) MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem 287:34970–34978PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M, Lopez I, Javier Sola J, Alonso MM, Fortes P, Garcia-Foncillas J (2011) MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 29:1661–1671PubMedCrossRefGoogle Scholar
  133. 133.
    Bourguignon LY, Wong G, Earle C, Chen L (2012) Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 287:32800–32824PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bruno Costa Gomes
    • 1
  • José Rueff
    • 1
  • António Sebastião Rodrigues
    • 1
  1. 1.Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations