Advertisement

Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter

  • Ana Armada
  • Célia Martins
  • Gabriella Spengler
  • Joseph Molnar
  • Leonard Amaral
  • António Sebastião Rodrigues
  • Miguel ViveirosEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1395)

Abstract

The cell membrane P-glycoprotein (P-gp; MDR1, ABCB1) is an energy-dependent efflux pump that belongs to the ATP-binding cassette (ABC) family of transporters, and has been associated with drug resistance in eukaryotic cells. Multidrug resistance (MDR) is related to an increased expression and function of the ABCB1 (P-gp) efflux pump that often causes chemotherapeutic failure in cancer. Modulators of this efflux pump, such as the calcium channel blocker verapamil (VP) and cyclosporine A (CypA), can reverse the MDR phenotype but in vivo studies have revealed disappointing results due to adverse side effects. Currently available methods are unable to visualize and assess in a real-time basis the effectiveness of ABCB1 inhibitors on the uptake and efflux of ABCB1 substrates. However, predicting and testing ABCB1 modulation activity using living cells during drug development are crucial. The use of ABCB1-transfected mouse T-lymphoma cell line to study the uptake/efflux of fluorescent probes like ethidium bromide (EB), rhodamine 123 (Rh-123), and carbocyanine dye DiOC2, in the presence and absence of potential inhibitors, is currently used in our laboratories to evaluate the ability of a drug to inhibit ABCB1-mediated drug accumulation and efflux. Here we describe and compare three in vitro methods, which evaluate the permeability, transport kinetics of fluorescent substrates, and inhibition of the ABCB1 efflux pump by drugs of chemical synthesis or extracted from natural sources, using model cancer cell lines overexpressing this transporter, namely (1) real-time fluorimetry that assesses the accumulation of ethidium bromide, (2) flow cytometry, and (3) fluorescent microscopy using rhodamine 123 and DiOC2.

Key words

ABCB1 MDR1 MDR Real-time fluorimetry Flow cytometry 

References

  1. 1.
    Saraswathy M, Gong S (2013) Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv 31:1397–1407CrossRefPubMedGoogle Scholar
  2. 2.
    Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14:3–9CrossRefPubMedGoogle Scholar
  3. 3.
    Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25:231–259CrossRefPubMedGoogle Scholar
  4. 4.
    Goodman LS, Hardman JG, Limbird LE, Gilman AG (2001) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Kimura Y, Morita SY, Matsuo M, Ueda K (2007) Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci 98:1303–1310CrossRefPubMedGoogle Scholar
  6. 6.
    Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757CrossRefPubMedGoogle Scholar
  7. 7.
    Sarkadi B, Homolya L, Szakacs G, Varadi A (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236CrossRefPubMedGoogle Scholar
  8. 8.
    Taguchi Y, Kino K, Morishima M, Komano T, Kane SE, Ueda K (1997) Alteration of substrate specificity by mutations at the His61 position in predicted transmembrane domain 1 of human MDR1/P-glycoprotein. Biochemistry 36:8883–8889CrossRefPubMedGoogle Scholar
  9. 9.
    Molnar J, Kars MD, Gunduz U, Engi H, Schumacher U, Van Damme EJ, Peumans WJ, Makovitzky J, Gyemant N, Molnar P (2009) Interaction of tomato lectin with ABC transporter in cancer cells: glycosylation confers functional conformation of P-gp. Acta Histochem 111:329–333CrossRefPubMedGoogle Scholar
  10. 10.
    Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162CrossRefPubMedGoogle Scholar
  11. 11.
    Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427CrossRefPubMedGoogle Scholar
  12. 12.
    Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398CrossRefPubMedGoogle Scholar
  13. 13.
    Eckford PD, Sharom FJ (2008) Interaction of the P-glycoprotein multidrug efflux pump with cholesterol: effects on ATPase activity, drug binding and transport. Biochemistry 47:13686–13698CrossRefPubMedGoogle Scholar
  14. 14.
    Shustik C, Dalton W, Gros P (1995) P-glycoprotein-mediated multidrug resistance in tumor cells: biochemistry, clinical relevance and modulation. Mol Aspects Med 16:1–78CrossRefPubMedGoogle Scholar
  15. 15.
    Sharom FJ (2014) Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol 4:41CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yang K, Wu J, Li X (2008) Recent advances in the research of P-glycoprotein inhibitors. Biosci Trends 2:137–146PubMedGoogle Scholar
  17. 17.
    Ding PR, Tiwari AK, Ohnuma S, Lee JW, An X, Dai CL, Lu QS, Singh S, Yang DH, Talele TT, Ambudkar SV, Chen ZS (2011) The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter. PLoS One 6, e19329CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Palmeira A, Sousa E, Vasconcelos MH, Pinto MM (2012) Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 19:1946–2025CrossRefPubMedGoogle Scholar
  19. 19.
    Eichhorn T, Efferth T (2012) P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs. J Ethnopharmacol 141:557–570CrossRefPubMedGoogle Scholar
  20. 20.
    Zhu H, Liu Z, Tang L, Liu J, Zhou M, Xie F, Wang Z, Wang Y, Shen S, Hu L, Yu L (2012) Reversal of P-gp and MRP1-mediated multidrug resistance by H6, a gypenoside aglycon from Gynostemma pentaphyllum, in vincristine-resistant human oral cancer (KB/VCR) cells. Eur J Pharmacol 696:43–53CrossRefPubMedGoogle Scholar
  21. 21.
    Munagala S, Sirasani G, Kokkonda P, Phadke M, Krynetskaia N, Lu P, Sharom FJ, Chaudhury S, Abdulhameed MD, Tawa G, Wallqvist A, Martinez R, Childers W, Abou-Gharbia M, Krynetskiy E, Andrade RB (2014) Synthesis and evaluation of Strychnos alkaloids as MDR reversal agents for cancer cell eradication. Bioorg Med Chem 22:1148–1155CrossRefPubMedGoogle Scholar
  22. 22.
    Lewandowska U, Gorlach S, Owczarek K, Hrabec E, Szewczyk K (2014) Synergistic interactions between anticancer chemotherapeutics and phenolic compounds and anticancer synergy between polyphenols. Postepy Hig Med Dosw (Online) 68:528–540CrossRefGoogle Scholar
  23. 23.
    Martins C, Doran C, Silva IC, Miranda C, Rueff J, Rodrigues AS (2014) Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells. Chem Biol Interact 218:1–9CrossRefPubMedGoogle Scholar
  24. 24.
    Dandawate P, Padhye S, Ahmad A, Sarkar FH (2013) Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res 3:165–182CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR (2014) Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 33(1):41–85CrossRefPubMedGoogle Scholar
  26. 26.
    Indumathy S, Dass CR (2013) Finding chemo: the search for marine-based pharmaceutical drugs active against cancer. J Pharm Pharmacol 65:1280–1301CrossRefPubMedGoogle Scholar
  27. 27.
    Khushnud T, Mousa SA (2013) Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer. Mol Biotechnol 55:78–86CrossRefPubMedGoogle Scholar
  28. 28.
    Aggarwal B, Prasad S, Sung B, Krishnan S, Guha S (2013) Prevention and treatment of colorectal cancer by natural agents from mother nature. Curr Colorectal Cancer Rep 9:37–56CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nabekura T (2010) Overcoming multidrug resistance in human cancer cells by natural compounds. Toxins 2:1207–1224CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr, Brenner DE (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila) 4:354–364CrossRefGoogle Scholar
  31. 31.
    Dorai T, Aggarwal BB (2004) Role of chemopreventive agents in cancer therapy. Cancer Lett 215:129–140CrossRefPubMedGoogle Scholar
  32. 32.
    Martins A, Toth N, Vanyolos A, Beni Z, Zupko I, Molnar J, Bathori M, Hunyadi A (2012) Significant activity of ecdysteroids on the resistance to doxorubicin in mammalian cancer cells expressing the human ABCB1 transporter. J Med Chem 55:5034–5043CrossRefPubMedGoogle Scholar
  33. 33.
    Kim TH, Shin YJ, Won AJ, Lee BM, Choi WS, Jung JH, Chung HY, Kim HS (2014) Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta 1840:615–625CrossRefPubMedGoogle Scholar
  34. 34.
    Gyemant N, Tanaka M, Antus S, Hohmann J, Csuka O, Mandoky L, Molnar J (2005) In vitro search for synergy between flavonoids and epirubicin on multidrug-resistant cancer cells. In Vivo 19:367–374PubMedGoogle Scholar
  35. 35.
    Du G, Lin H, Yang Y, Zhang S, Wu X, Wang M, Ji L, Lu L, Yu L, Han G (2010) Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. Int Immunopharmacol 10:819–826CrossRefPubMedGoogle Scholar
  36. 36.
    Krishan A, Fitz CM, Andritsch I (1997) Drug retention, efflux, and resistance in tumor cells. Cytometry 29:279–285CrossRefPubMedGoogle Scholar
  37. 37.
    Spengler G, Ramalhete C, Martins M, Martins A, Serly J, Viveiros M, Molnar J, Duarte N, Mulhovo S, Ferreira MJ, Amaral L (2009) Evaluation of cucurbitane-type triterpenoids from Momordica balsamina on P-glycoprotein (ABCB1) by flow cytometry and real-time fluorometry. Anticancer Res 29:3989–3993PubMedGoogle Scholar
  38. 38.
    Spengler G, Viveiros M, Martins M, Rodrigues L, Martins A, Molnar J, Couto I, Amaral L (2009) Demonstration of the activity of P-glycoprotein by a semi-automated fluorometric method. Anticancer Res 29:2173–2177PubMedGoogle Scholar
  39. 39.
    Viveiros M, Martins A, Paixao L, Rodrigues L, Martins M, Couto I, Fahnrich E, Kern WV, Amaral L (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462CrossRefPubMedGoogle Scholar
  40. 40.
    Shapiro HM (2004) “Cellular astronomy” – a foreseeable future in cytometry. Cytometry A 60:115–124CrossRefPubMedGoogle Scholar
  41. 41.
    Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234CrossRefPubMedGoogle Scholar
  42. 42.
    Pastan I, Gottesman MM, Ueda K, Lovelace E, Rutherford AV, Willingham MC (1988) A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc Natl Acad Sci U S A 85:4486–4490CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Weaver JL, Szabo G Jr, Pine PS, Gottesman MM, Goldenberg S, Aszalos A (1993) The effect of ion channel blockers, immunosuppressive agents, and other drugs on the activity of the multi-drug transporter. Int J Cancer 54:456–461CrossRefPubMedGoogle Scholar
  44. 44.
    Spengler G, Evaristo M, Handzlik J, Serly J, Molnar J, Viveiros M, Kiec-Kononowicz K, Amaral L (2010) Biological activity of hydantoin derivatives on P-glycoprotein (ABCB1) of mouse lymphoma cells. Anticancer Res 30:4867–4871PubMedGoogle Scholar
  45. 45.
    Cornwell MM, Pastan I, Gottesman MM (1987) Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem 262:2166–2170PubMedGoogle Scholar
  46. 46.
    Koizumi S, Konishi M, Ichihara T, Wada H, Matsukawa H, Goi K, Mizutani S (1995) Flow cytometric functional analysis of multidrug resistance by Fluo-3: a comparison with rhodamine-123. Eur J Cancer 31A:1682–1688CrossRefPubMedGoogle Scholar
  47. 47.
    Molnar J, Szabo D, Mandi Y, Mucsi I, Fischer J, Varga A, Konig S, Motohashi N (1998) Multidrug resistance reversal in mouse lymphoma cells by heterocyclic compounds. Anticancer Res 18:3033–3038PubMedGoogle Scholar
  48. 48.
    Orlowski S, Mir LM, Belehradek J Jr, Garrigos M (1996) Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators. Biochem J 317(Pt 2):515–522CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Spengler G, Takacs D, Horvath A, Riedl Z, Hajos G, Amaral L, Molnar J (2014) Multidrug resistance reversing activity of newly developed phenothiazines on P-glycoprotein (ABCB1)-related resistance of mouse T-lymphoma cells. Anticancer Res 34:1737–1741PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ana Armada
    • 1
  • Célia Martins
    • 2
  • Gabriella Spengler
    • 3
  • Joseph Molnar
    • 3
  • Leonard Amaral
    • 3
    • 4
  • António Sebastião Rodrigues
    • 2
  • Miguel Viveiros
    • 1
    Email author
  1. 1.Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisbonPortugal
  2. 2.Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal
  3. 3.Department of Medical Microbiology and Immunobiology, Faculty of MedicineUniversity of SzegedSzegedHungary
  4. 4.Unidade de Medicina das Viagens, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations