Advertisement

Cancer Exosomes as Mediators of Drug Resistance

  • Maria do Rosário André
  • Ana Pedro
  • David Lyden
Part of the Methods in Molecular Biology book series (MIMB, volume 1395)

Abstract

In the last decades, several studies demonstrated that the tumor microenvironment is a critical determinant not only of tumor progression and metastasis, but also of resistance to therapy. Exosomes are small membrane vesicles of endocytic origin, which contain mRNAs, DNA fragments, and proteins, and are released by many different cell types, including cancer cells. Mounting evidence has shown that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with the tumor microenvironment. Understanding how exosomes and the tumor microenvironment impact drug resistance will allow novel and better strategies to overcome drug resistance and treat cancer.

Here, we describe a technique for exosome purification from cell culture, and fresh and frozen plasma, and further analysis by electron microscopy, NanoSight microscope, and Western blot.

Key words

Tumor microenvironment Pre-metastatic niche Tumor-derived exosomes Drug resistance Cell culture Plasma NanoSight microscope Electron microscopy 

Notes

Acknowledgements

We thank Prof. Maria de Sousa from the Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal, and the Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal, for her advice.

References

  1. 1.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252CrossRefPubMedGoogle Scholar
  2. 2.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, Zhao YW, Wei YQ (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7:e50946CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Inoshima N, Nakanishi Y, Minami T, Izumi M, Takayama K, Yoshino I, Hara N (2002) The influence of dendritic cell infiltration and vascular endothelial growth factor expression on the prognosis of non-small cell lung cancer. Clin Cancer Res 8:3480–3486PubMedGoogle Scholar
  6. 6.
    Bron L, Jandus C, Andrejevic-Blant S, Speiser DE, Monnier P, Romero P, Rivals JP (2013) Prognostic value of arginase-II expression and regulatory T-cell infiltration in head and neck squamous cell carcinoma. Int J Cancer 132:E85–E93CrossRefPubMedGoogle Scholar
  7. 7.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401CrossRefPubMedGoogle Scholar
  8. 8.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375CrossRefPubMedGoogle Scholar
  10. 10.
    Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM, Shibuya M (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300CrossRefPubMedGoogle Scholar
  11. 11.
    Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283CrossRefPubMedGoogle Scholar
  12. 12.
    Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108CrossRefPubMedGoogle Scholar
  13. 13.
    Akers JC, Gonda D, Kim R, Carter BS, Chen CC (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113:1–11CrossRefPubMedGoogle Scholar
  14. 14.
    Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14:5338–5366CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Taylor DD, Gercel-Taylor C (2005) Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer 92:305–311PubMedPubMedCentralGoogle Scholar
  16. 16.
    EL Andaloussi S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357CrossRefPubMedGoogle Scholar
  17. 17.
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624CrossRefPubMedGoogle Scholar
  18. 18.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801CrossRefPubMedGoogle Scholar
  20. 20.
    Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416PubMedGoogle Scholar
  21. 21.
    Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 4:806–813CrossRefPubMedGoogle Scholar
  22. 22.
    Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 55:5451–5458PubMedGoogle Scholar
  23. 23.
    Durand RE (2001) Intermittent blood flow in solid tumours--an under-appreciated source of ‘drug resistance’. Cancer Metastasis Rev 20:57–61CrossRefPubMedGoogle Scholar
  24. 24.
    Galmarini FC, Galmarini CM, Sarchi MI, Abulafia J, Galmarini D (2000) Heterogeneous distribution of tumor blood supply affects the response to chemotherapy in patients with head and neck cancer. Microcirculation 7:405–410CrossRefPubMedGoogle Scholar
  25. 25.
    Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384PubMedGoogle Scholar
  26. 26.
    Shen J, Hughes C, Chao C, Cai J, Bartels C, Gessner T, Subjeck J (1987) Coinduction of glucose-regulated proteins and doxorubicin resistance in Chinese hamster cells. Proc Natl Acad Sci U S A 84:3278–3282CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443CrossRefPubMedGoogle Scholar
  28. 28.
    Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 83:5978–5982CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hirst DG, Denekamp J (1979) Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet 12:31–42PubMedGoogle Scholar
  30. 30.
    Valeriote F, van Putten L (1975) Proliferation-dependent cytotoxicity of anticancer agents: a review. Cancer Res 35:2619–2630PubMedGoogle Scholar
  31. 31.
    Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, Mehlen P (1997) HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 57:2661–2667PubMedGoogle Scholar
  32. 32.
    Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C, Chilvers ER, Dransfield I, Donnelly SC, Strieter R, Haslett C (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5:662–668CrossRefPubMedGoogle Scholar
  33. 33.
    Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L, Nelson PS (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18:1359–1368CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma TF, Zhang J, Chen L, Tang JH, Zhao JH (2014) Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol 35:10773–10779CrossRefPubMedGoogle Scholar
  36. 36.
    Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, Zhong SL, Ji MH, Hu Q, Luo Z, Wu JZ, Tang JH (2014) Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9:e95240CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R, Webb G, McDermott R, Watson W, Crown J, O’Driscoll L (2012) Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One 7:e50999CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Xiao X, Yu S, Li S, Wu J, Ma R, Cao H, Zhu Y, Feng J (2014) Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One 9:e89534CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, Howell SB (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4:1595–1604CrossRefPubMedGoogle Scholar
  40. 40.
    Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Della Mina P, Menard S, Filipazzi P, Rivoltini L, Tagliabue E, Pupa SM (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 227:658–667CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maria do Rosário André
    • 1
    • 2
  • Ana Pedro
    • 1
    • 2
  • David Lyden
    • 1
    • 2
  1. 1.Champalimaud FoundationLisbonPortugal
  2. 2.Department of Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical SciencesNOVA UniversityLisbonPortugal

Personalised recommendations