Advertisement

The Regulatory Role of Long Noncoding RNAs in Cancer Drug Resistance

  • Marjan E. Askarian-Amiri
  • Euphemia Leung
  • Graeme Finlay
  • Bruce C. Baguley
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1395)

Abstract

Recent genomic and transcriptomic analysis has revealed that the majority of the human genome is transcribed as nonprotein-coding RNA. These transcripts, known as long noncoding RNA, have structures similar to those of mRNA. Many of these transcripts are now thought to have regulatory roles in different biological pathways which provide cells with an additional layer of regulatory complexity in gene expression and proteome function in response to stimuli. A wide variety of cellular functions may thus depend on the fine-tuning of interactions between noncoding RNAs and other key molecules in cell signaling networks. Deregulation of many noncoding RNAs is thought to occur in a variety of human diseases, including neoplasia and cancer drug resistance. Here we discuss recent findings on the molecular functions of long noncoding RNAs in cellular pathways mediating resistance to anticancer drugs.

Key words

Long noncoding RNAs Gene regulation Drug resistance Epigenetics Gene expression 

References

  1. 1.
    Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874CrossRefPubMedGoogle Scholar
  3. 3.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726CrossRefPubMedGoogle Scholar
  4. 4.
    Xia H, Hui KM (2014) Mechanism of cancer drug resistance and the involvement of noncoding RNAs. Curr Med Chem 21:3029–3041CrossRefPubMedGoogle Scholar
  5. 5.
    Balch C, Huang TH, Brown R, Nephew KP (2004) The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 191:1552–1572CrossRefPubMedGoogle Scholar
  6. 6.
    van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, Macinnes AW, Cuppen E, Simonis M (2014) Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol 15:R6CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang F, Li X, Xie X, Zhao L, Chen W (2008) UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 582:1919–1927CrossRefPubMedGoogle Scholar
  8. 8.
    Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354CrossRefPubMedGoogle Scholar
  9. 9.
    Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y (2014) Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 281:1750–1758CrossRefPubMedGoogle Scholar
  10. 10.
    Li Z, Li X, Wu S, Xue M, Chen W (2014) Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 105:951–955CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25:69–80CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi K, Yan IK, Kogure T, Haga H, Patel T (2014) Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 4:458–467CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang KC, Rao PH, Lau CC, Heard E, Ng SK, Brown C, Mok SC, Berkowitz RS, Ng SW (2002) Relationship of XIST expression and responses of ovarian cancer to chemotherapy. Mol Cancer Ther 1:769–776PubMedGoogle Scholar
  14. 14.
    Rottenberg S, Vollebergh MA, de Hoon B, de Ronde J, Schouten PC, Kersbergen A, Zander SA, Pajic M, Jaspers JE, Jonkers M, Loden M, Sol W, van der Burg E, Wesseling J, Gillet JP, Gottesman MM, Gribnau J, Wessels L, Linn SC, Jonkers J, Borst P (2012) Impact of intertumoral heterogeneity on predicting chemotherapy response of BRCA1-deficient mammary tumors. Cancer Res 72:2350–2361CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Salvador MA, Wicinski J, Cabaud O, Toiron Y, Finetti P, Josselin E, Lelievre H, Kraus-Berthier L, Depil S, Bertucci F, Collette Y, Birnbaum D, Charafe-Jauffret E, Ginestier C (2013) The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clin Cancer Res 19:6520–6531CrossRefPubMedGoogle Scholar
  16. 16.
    Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y (2014) TGF-beta-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res 20:1531–1541CrossRefPubMedGoogle Scholar
  17. 17.
    Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst 8:2289–2294CrossRefPubMedGoogle Scholar
  18. 18.
    Jiao F, Hu H, Yuan C, Wang L, Jiang W, Jin Z, Guo Z (2014) Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol Rep 32:2485–2492PubMedGoogle Scholar
  19. 19.
    Jiao F, Hu H, Han T, Yuan C, Wang L, Jin Z, Guo Z (2015) Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells. Int J Mol Sci 16:6677–6693CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xu WH, Zhang JB, Dang Z, Li X, Zhou T, Liu J, Wang DS, Song WJ, Dou KF (2014) Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma. Int J Biol Sci 10:664–676CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gupta R, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kogo RS, Mimori T, Kawahara K, Imoto K, Sudo S, Tanaka T, Shibata F, Suzuki K, Komune A, Miyano S, Mori M (2011) Long non-coding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326CrossRefPubMedGoogle Scholar
  23. 23.
    Geng YJ, Xie SL, Li Q, Ma J, Wang GY (2011) Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res 39:2119–2128CrossRefPubMedGoogle Scholar
  24. 24.
    Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, Nishida T, Bamba T, Kanda T, Ajioka Y, Taguchi T, Okahara S, Takahashi H, Nishida Y, Hosokawa M, Hasegawa T, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72:1126–1136CrossRefPubMedGoogle Scholar
  25. 25.
    Liu Z, Sun M, Lu K, Liu J, Zhang M, Wu W, De W, Wang Z, Wang R (2013) The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS One 8:e77293CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Srikantan V, Zou Z, Petrovics G, Xu L, Augustus M, Davis L, Livezey JR, Connell T, Sesterhenn IA, Yoshino K, Buzard GS, Mostofi FK, McLeod DG, Moul JW, Srivastava S (2000) PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci U S A 97:12216–12221CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fu X, Ravindranath L, Tran N, Petrovics G, Srivastava S (2006) Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol 25:135–141CrossRefPubMedGoogle Scholar
  28. 28.
    Smith C, Steitz JA (1998) Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5'-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol 18:6897–6909CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schneider C, King RM, Philipson L (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell 54:787–793CrossRefPubMedGoogle Scholar
  30. 30.
    Williams GT, Farzaneh F (2012) Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer 12:84–88PubMedGoogle Scholar
  31. 31.
    Hansji H, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME (2014) Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer. Front Genet 5:379CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mourtada-Maarabouni M, Hasan AM, Farzaneh F, Williams GT (2010) Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol 78:19–28CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Williams GT, Mourtada-Maarabouni M, Farzaneh F (2011) A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans 39:482–486CrossRefPubMedGoogle Scholar
  34. 34.
    Dong S, Qu X, Li W, Zhong X, Li P, Yang S, Chen X, Shao M, Zhang L (2015) The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J Hematol Oncol 8:43CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang Y, Li H, Hou S, Hu B, Liu J, Wang J (2013) The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One 8:e65309CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Polager S, Ginsberg D (2008) E2F – at the crossroads of life and death. Trends Cell Biol 18:528–535CrossRefPubMedGoogle Scholar
  37. 37.
    Feldstein O, Nizri T, Doniger T, Jacob J, Rechavi G, Ginsberg D (2013) The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer 12:131CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerod A, Borresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pang JC, Li KK, Lau KM, Ng YL, Wong J, Chung NY, Li HM, Chui YL, Lui VW, Chen ZP, Chan DT, Poon WS, Wang Y, Mao Y, Zhou L, Ng HK (2010) KIAA0495/PDAM is frequently downregulated in oligodendroglial tumors and its knockdown by siRNA induces cisplatin resistance in glioma cells. Brain Pathol 20:1021–1032CrossRefPubMedGoogle Scholar
  40. 40.
    Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479CrossRefPubMedGoogle Scholar
  41. 41.
    Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li Z, Zhao X, Zhou Y, Liu Y, Zhou Q, Ye H, Wang Y, Zeng J, Song Y, Gao W, Zheng S, Zhuang B, Chen H, Li W, Li H, Fu Z, Chen R (2015) The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J Transl Med 13:84CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mikyas Y, Makabi M, Raval-Fernandes S, Harrington L, Kickhoefer VA, Rome LH, Stewart PL (2004) Cryoelectron microscopy imaging of recombinant and tissue derived vaults: localization of the MVP N termini and VPARP. J Mol Biol 344:91–105CrossRefPubMedGoogle Scholar
  44. 44.
    Anderson DH, Kickhoefer VA, Sievers SA, Rome LH, Eisenberg D (2007) Draft crystal structure of the vault shell at 9-A resolution. PLoS Biol 5:e318CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kickhoefer VA, Searles RP, Kedersha NL, Garber ME, Johnson DL, Rome LH (1993) Vault ribonucleoprotein particles from rat and bullfrog contain a related small RNA that is transcribed by RNA polymerase III. J Biol Chem 268:7868–7873PubMedGoogle Scholar
  46. 46.
    Gopinath SC, Wadhwa R, Kumar PK (2010) Expression of noncoding vault RNA in human malignant cells and its importance in mitoxantrone resistance. Mol Cancer Res 8:1536–1546CrossRefPubMedGoogle Scholar
  47. 47.
    Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929CrossRefPubMedGoogle Scholar
  48. 48.
    Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B (1993) Tumour-suppressor activity of H19 RNA. Nature 365:764–767CrossRefPubMedGoogle Scholar
  49. 49.
    Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, Dugimont T, Curgy JJ (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 23:1885–1895CrossRefPubMedGoogle Scholar
  50. 50.
    Matouk I, Raveh E, Ohana P, Lail RA, Gershtain E, Gilon M, De Groot N, Czerniak A, Hochberg A (2013) The increasing complexity of the oncofetal h19 gene locus: functional dissection and therapeutic intervention. Int J Mol Sci 14:4298–4316CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tsang WP, Kwok TT (2007) Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene 26:4877–4881CrossRefPubMedGoogle Scholar
  52. 52.
    Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D (2014) Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol 34:3182–3193CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jiang M, Huang O, Xie Z, Wu S, Zhang X, Shen A, Liu H, Chen X, Wu J, Lou Y, Mao Y, Sun K, Hu S, Geng M, Shen K (2014) A novel long non-coding RNA-ARA: adriamycin resistance associated. Biochem Pharmacol 87:254–283CrossRefPubMedGoogle Scholar
  54. 54.
    Marcu KB, Bossone SA, Patel AJ (1992) myc function and regulation. Annu Rev Biochem 61:809–860CrossRefPubMedGoogle Scholar
  55. 55.
    Shtivelman E, Bishop JM (1990) Effects of translocations on transcription from PVT. Mol Cell Biol 10:1835–1839CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordonez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–190CrossRefPubMedGoogle Scholar
  57. 57.
    Pomerantz MM, Beckwith CA, Regan MM, Wyman SK, Petrovics G, Chen Y, Hawksworth DJ, Schumacher FR, Mucci L, Penney KL, Stampfer MJ, Chan JA, Ardlie KG, Fritz BR, Parkin RK, Lin DW, Dyke M, Herman P, Lee S, Oh WK, Kantoff PW, Tewari M, McLeod DG, Srivastava S, Freedman ML (2009) Evaluation of the 8q24 prostate cancer risk locus and MYC expression. Cancer Res 69:5568–5574CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Enciso-Mora V, Broderick P, Ma Y, Jarrett RF, Hjalgrim H, Hemminki K, van den Berg A, Olver B, Lloyd A, Dobbins SE, Lightfoot T, van Leeuwen FE, Forsti A, Diepstra A, Broeks A, Vijayakrishnan J, Shield L, Lake A, Montgomery D, Roman E, Engert A, von Strandmann EP, Reiners KS, Nolte IM, Smedby KE, Adami HO, Russell NS, Glimelius B, Hamilton-Dutoit S, de Bruin M, Ryder LP, Molin D, Sorensen KM, Chang ET, Taylor M, Cooke R, Hofstra R, Westers H, van Wezel T, van Eijk R, Ashworth A, Rostgaard K, Melbye M, Swerdlow AJ, Houlston RS (2010) A genome-wide association study of Hodgkin’s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat Genet 42:1126–1130CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Shao RG, Cao CX, Shimizu T, O’Connor PM, Kohn KW, Pommier Y (1997) Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 57:4029–4035PubMedGoogle Scholar
  60. 60.
    Borg A, Baldetorp B, Ferno M, Olsson H, Sigurdsson H (1992) c-myc amplification is an independent prognostic factor in postmenopausal breast cancer. Int J Cancer 51:687–691CrossRefPubMedGoogle Scholar
  61. 61.
    O'Reilly EM, Abou-Alfa GK (2007) Cytotoxic therapy for advanced pancreatic adenocarcinoma. Semin Oncol 34:347–353CrossRefPubMedGoogle Scholar
  62. 62.
    Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480CrossRefPubMedGoogle Scholar
  63. 63.
    Beck-Engeser GB, Lum AM, Huppi K, Caplen NJ, Wang BB, Wabl M (2008) Pvt1-encoded microRNAs in oncogenesis. Retrovirology 5:4CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ding J, Li D, Gong M, Wang J, Huang X, Wu T, Wang C (2014) Expression and clinical significance of the long non-coding RNA PVT1 in human gastric cancer. Onco Targets Ther 7:1625–1630CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Adriaenssens E, Lottin S, Dugimont T, Fauquette W, Coll J, Dupouy JP, Boilly B, Curgy JJ (1999) Steroid hormones modulate H19 gene expression in both mammary gland and uterus. Oncogene 18:4460CrossRefPubMedGoogle Scholar
  66. 66.
    Meijer D, van Agthoven T, Bosma PT, Nooter K, Dorssers LC (2006) Functional screen for genes responsible for tamoxifen resistance in human breast cancer cells. Mol Cancer Res 4:379–386CrossRefPubMedGoogle Scholar
  67. 67.
    Godinho MF, Sieuwerts AM, Look MP, Meijer D, Foekens JA, Dorssers LC, van Agthoven T (2010) Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer. Br J Cancer 103:1284–1291CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Godinho M, Meijer D, Setyono-Han B, Dorssers LC, van Agthoven T (2011) Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. J Cell Physiol 226:1741–1749CrossRefPubMedGoogle Scholar
  69. 69.
    Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079CrossRefPubMedGoogle Scholar
  70. 70.
    Takeshita H, Kusuzaki K, Ashihara T, Gebhardt MC, Mankin HJ, Hirasawa Y (2000) Intrinsic resistance to chemotherapeutic agents in murine osteosarcoma cells. J Bone Joint Surg Am 82-A:963–969PubMedGoogle Scholar
  71. 71.
    Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 7:597–615CrossRefGoogle Scholar
  72. 72.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111CrossRefPubMedGoogle Scholar
  73. 73.
    Tam WL, Ng HH (2014) Sox2: masterminding the root of cancer. Cancer Cell 26:3–5CrossRefPubMedGoogle Scholar
  74. 74.
    Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273CrossRefPubMedGoogle Scholar
  75. 75.
    Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–156CrossRefPubMedGoogle Scholar
  76. 76.
    Garraway LA, Janne PA (2012) Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov 2:214–226CrossRefPubMedGoogle Scholar
  77. 77.
    Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880CrossRefPubMedGoogle Scholar
  78. 78.
    Basseville A, Preisser L, de Carne Trecesson S, Boisdron-Celle M, Gamelin E, Coqueret O, Morel A (2011) Irinotecan induces steroid and xenobiotic receptor (SXR) signaling to detoxification pathway in colon cancer cells. Mol Cancer 10:80CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Salehan MR, Morse HR (2013) DNA damage repair and tolerance: a role in chemotherapeutic drug resistance. Br J Biomed Sci 70:31–40CrossRefPubMedGoogle Scholar
  80. 80.
    Shah MA, Schwartz GK (2001) Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res 7:2168–2181PubMedGoogle Scholar
  81. 81.
    Marquez RT, Tsao BW, Faust NF, Xu L (2013) Drug resistance and molecular cancer therapy: apoptosis versus autophagy. In: Apoptosis. Runder, J (Ed.). ISBN: 978-953-51-1133-7, InTech, doi: 10.5772/55415. www.intechopen.com/books/apoptosis/ drug-resistance-and-molecular-cancer-therapy-apoptosis-versus-autophagy. InTech; 2013
  82. 82.
    Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marjan E. Askarian-Amiri
    • 1
    • 2
  • Euphemia Leung
    • 1
    • 2
  • Graeme Finlay
    • 1
    • 2
  • Bruce C. Baguley
    • 1
  1. 1.Auckland Cancer Society Research Centre, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Molecular Medicine and Pathology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations