Proteomics in Systems Biology pp 287-310

Part of the Methods in Molecular Biology book series (MIMB, volume 1394) | Cite as

Systemic Analysis of Regulated Functional Networks

  • Luis Francisco Hernández Sánchez
  • Elise Aasebø
  • Frode Selheim
  • Frode S. Berven
  • Helge Ræder
  • Harald Barsnes
  • Marc Vaudel
Protocol

Abstract

In biological and medical sciences, high throughput analytical methods are now commonly used to investigate samples of different conditions, e.g., patients versus controls. Systemic functional analyses emerged as a reference method to go beyond a list of regulated compounds, and identify activated or inactivated biological functions. This approach holds the promise for a better understanding of biological systems, of the mechanisms involved in disease progression, and thus improved diagnosis, prognosis, and treatment. In this chapter, we present a simple workflow to conduct pathway analyses on biological data using the freely available Reactome platform (http://www.reactome.org).

Key words

Pathway analysis Data interpretation Functional proteomics 

References

  1. 1.
    Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRefGoogle Scholar
  2. 2.
    Rosen R (1968) A means toward a new holism. Science 161:34–35CrossRefGoogle Scholar
  3. 3.
    Barsnes H, Martens L (2013) Crowdsourcing in proteomics: public resources lead to better experiments. Amino Acids 44:1129–1137CrossRefPubMedGoogle Scholar
  4. 4.
    Vaudel M, Sickmann A, Martens L (2014) Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics. Biochim Biophys Acta 1844:12–20CrossRefPubMedGoogle Scholar
  5. 5.
    Muller T, Schrotter A, Loosse C et al (2011) Sense and nonsense of pathway analysis software in proteomics. J Proteome Res 10:5398–5408CrossRefPubMedGoogle Scholar
  6. 6.
    Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8, e1002375CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vizcaino JA, Mueller M, Hermjakob H et al (2009) Charting online OMICS resources: a navigational chart for clinical researchers. Proteomics Clin Appl 3:18–29CrossRefPubMedGoogle Scholar
  8. 8.
    Kanehisa M (1997) A database for post-genome analysis. Trends Genet 13:375–376CrossRefPubMedGoogle Scholar
  9. 9.
    Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27:29–34CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pico AR, Kelder T, van Iersel MP et al (2008) WikiPathways: pathway editing for the people. PLoS Biol 6, e184CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697CrossRefPubMedGoogle Scholar
  12. 12.
    Takami H, Taniguchi T, Moriya Y et al (2012) Evaluation method for the potential functionome harbored in the genome and metagenome. BMC Genomics 13:699CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kisseleva T, Bhattacharya S, Braunstein J et al (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1–24CrossRefPubMedGoogle Scholar
  15. 15.
    Aasebo E, Vaudel M, Mjaavatten O et al (2014) Performance of super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines. Proteomics 14(17-18):1971–6CrossRefPubMedGoogle Scholar
  16. 16.
    Vizcaino JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545CrossRefPubMedGoogle Scholar
  18. 18.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  19. 19.
    Bertsch A, Gropl C, Reinert K et al (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol Biol 696:353–367CrossRefPubMedGoogle Scholar
  20. 20.
    Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10:1150–1159CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vaudel M, Burkhart JM, Zahedi RP et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33:22–24CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Luis Francisco Hernández Sánchez
    • 1
  • Elise Aasebø
    • 2
  • Frode Selheim
    • 2
  • Frode S. Berven
    • 2
    • 3
    • 4
  • Helge Ræder
    • 5
    • 6
  • Harald Barsnes
    • 2
    • 5
  • Marc Vaudel
    • 2
  1. 1.Graduate Program in OptimizationUniversidad Autónoma Metropolitana AzcapotzalcoMexico CityMexico
  2. 2.Proteomics Unit, Department of BiomedicineUniversity of BergenBergenNorway
  3. 3.KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical MedicineUniversity of BergenBergenNorway
  4. 4.Norwegian Multiple Sclerosis Competence Centre, Department of NeurologyHaukeland University HospitalBergenNorway
  5. 5.KG Jebsen Center for Diabetes Research, Department of Clinical ScienceUniversity of BergenBergenNorway
  6. 6.Department of PediatricsHaukeland University HospitalBergenNorway

Personalised recommendations