Interpretation of Quantitative Shotgun Proteomic Data

  • Elise Aasebø
  • Frode S. Berven
  • Frode Selheim
  • Harald Barsnes
  • Marc Vaudel
Part of the Methods in Molecular Biology book series (MIMB, volume 1394)


In quantitative proteomics, large lists of identified and quantified proteins are used to answer biological questions in a systemic approach. However, working with such extensive datasets can be challenging, especially when complex experimental designs are involved. Here, we demonstrate how to post-process large quantitative datasets, detect proteins of interest, and annotate the data with biological knowledge. The protocol presented can be achieved without advanced computational knowledge thanks to the user-friendly Perseus interface (available from the MaxQuant website, Various visualization techniques facilitating the interpretation of quantitative results in complex biological systems are also highlighted.

Key words

Quantification Data interpretation Perseus Data post-processing 



F.S.B. and F.S. acknowledge the support by the Norwegian Cancer Society. H.B. is supported by the Research Council of Norway.


  1. 1.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefPubMedGoogle Scholar
  2. 2.
    Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12:3444–3452CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48CrossRefPubMedGoogle Scholar
  4. 4.
    Vaudel M, Sickmann A, Martens L (2010) Peptide and protein quantification: a map of the minefield. Proteomics 10:650–670CrossRefPubMedGoogle Scholar
  5. 5.
    Bantscheff M, Lemeer S, Savitski MM et al (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965CrossRefPubMedGoogle Scholar
  6. 6.
    Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031CrossRefPubMedGoogle Scholar
  7. 7.
    Vaudel M, Sickmann A, Martens L (2014) Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics. Biochim Biophys Acta 1844:12–20CrossRefPubMedGoogle Scholar
  8. 8.
    Aasebo E, Vaudel M, Mjaavatten O et al (2014) Performance of super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines. Proteomics 14:1971–1976CrossRefPubMedGoogle Scholar
  9. 9.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  10. 10.
    Vizcaino JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545CrossRefPubMedGoogle Scholar
  12. 12.
    Kohlbacher O, Reinert K, Gropl C et al (2007) TOPP—the OpenMS proteomics pipeline. Bioinformatics 23:e191–e197CrossRefPubMedGoogle Scholar
  13. 13.
    Bertsch A, Gropl C, Reinert K et al (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol Biol 696:353–367CrossRefPubMedGoogle Scholar
  14. 14.
    Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10:1150–1159CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vaudel M, Burkhart JM, Zahedi RP et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nature biotechnology 33:22–24CrossRefPubMedGoogle Scholar
  16. 16.
    Cox J, Mann M (2012) 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13(Suppl 16):S12CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elise Aasebø
    • 1
  • Frode S. Berven
    • 1
    • 2
    • 3
  • Frode Selheim
    • 1
  • Harald Barsnes
    • 1
    • 4
  • Marc Vaudel
    • 1
  1. 1.Proteomics Unit, Department of BiomedicineUniversity of BergenBergenNorway
  2. 2.KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical MedicineUniversity of BergenBergenNorway
  3. 3.Norwegian Multiple Sclerosis Competence Centre, Department of NeurologyHaukeland University HospitalBergenNorway
  4. 4.KG Jebsen Center for Diabetes Research, Department of Clinical ScienceUniversity of BergenBergenNorway

Personalised recommendations