From Phosphoproteome to Modeling of Plant Signaling Pathways

  • Maksim Zakhartsev
  • Heidi Pertl-Obermeyer
  • Waltraud X. Schulze
Part of the Methods in Molecular Biology book series (MIMB, volume 1394)


Quantitative proteomic experiments in recent years became almost routine in many aspects of biology. Particularly the quantification of peptides and corresponding phosphorylated counterparts from a single experiment is highly important for understanding of dynamics of signaling pathways. We developed an analytical method to quantify phosphopeptides (pP) in relation to the quantity of the corresponding non-phosphorylated parent peptides (P). We used mixed-mode solid-phase extraction to purify total peptides from tryptic digest and separated them from most of the phosphorous-containing compounds (e.g., phospholipids, nucleotides) which enhances pP enrichment on TiO2 beads. Phosphoproteomic data derived with this designed method allows quantifying pP/P stoichiometry, and qualifying experimental data for mathematical modeling.

Key words

Phosphopeptide enrichment Mixed-mode solid-phase extraction Metal oxide affinity chromatography Mathematical modeling 


  1. 1.
    Klipp E, Liebermeister W (2006) Mathematical modeling of intracellular signaling pathways. BMC Neurosci 7(Suppl 1):S10. doi: 10.1186/1471-2202-7-S1-S10 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mariottini C, Iyengar R (2013) Chapter 16—system biology of cell signaling. In: Walhout AJM, Vidal M, Dekker J (eds) Handbook of systems biology. Academic, San Diego, pp 311–327CrossRefGoogle Scholar
  3. 3.
    Duan G, Walther D, Schulze W (2013) Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana. Front Plant Sci 4:540. doi: 10.3389/fpls.2013.00540 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Niittylä T, Fuglsang AT, Palmgren MG et al (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of arabidopsis. Mol Cell Proteomics 6(10):1711–1726. doi: 10.1074/mcp.M700164-MCP200 CrossRefPubMedGoogle Scholar
  5. 5.
    Schulze WX (2010) Proteomics approaches to understand protein phosphorylation in pathway modulation. Curr Opin Plant Biol 13(3):279–286. doi: 10.1016/j.pbi.2009.12.008 CrossRefGoogle Scholar
  6. 6.
    Blagoev B, Ong S-E, Kratchmarova I et al (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22(9):1139–1145. doi: 10.1038/nbt1005 CrossRefPubMedGoogle Scholar
  7. 7.
    Kholodenko BN, Hoek JB, Westerhoff HV et al (1997) Quantification of information transfer via cellular signal transduction pathways. FEBS Lett 414(2):430–434. doi: 10.1016/S0014-5793(97)01018-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Hein MY, Sharma K, Cox J et al (2013) Chapter 1—proteomic analysis of cellular systems. In: Walhout AJM, Vidal M, Dekker J (eds) Handbook of systems biology. Academic, San Diego, pp 3–25CrossRefGoogle Scholar
  9. 9.
    Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80(1):273–299. doi: 10.1146/annurev-biochem-061308-093216 CrossRefPubMedGoogle Scholar
  10. 10.
    Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439. doi: 10.1038/nrm2900 CrossRefPubMedGoogle Scholar
  11. 11.
    Altelaar AFM, Munoz J, Heck AJR (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14(1):35–48. doi: 10.1038/nrg3356 CrossRefPubMedGoogle Scholar
  12. 12.
    Olsen J, Macek B (2009) High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. In: Lipton M, Paša-Tolic L (eds) Mass spectrometry of proteins and peptides. Humana Press, Totowa, NJ, pp 131–142CrossRefGoogle Scholar
  13. 13.
    Schmelzle K, White FM (2006) Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol 17(4):406–414. doi: 10.1016/j.copbio.2006.06.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886. doi: 10.1074/mcp.T500007-MCP200 CrossRefPubMedGoogle Scholar
  15. 15.
    Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi: 10.1038/nmeth.1322 CrossRefPubMedGoogle Scholar
  16. 16.
    Nakagami H (2014) StageTip-based HAMMOC, an efficient and inexpensive phosphopeptide enrichment method for plant shotgun phosphoproteomics. In: Jorrin-Novo JV et al (eds) Plant proteomics. Humana Press, New York, pp 595–607Google Scholar
  17. 17.
    Thingholm TE, Jorgensen TJD, Jensen ON et al (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1(4):1929–1935. doi: 10.1038/nprot.2006.185 CrossRefPubMedGoogle Scholar
  18. 18.
    Beckers GM, Hoehenwarter W, Röhrig H et al (2014) Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis. In: Jorrin-Novo JV et al (eds) Plant proteomics. Humana Press, New York, pp 621–632Google Scholar
  19. 19.
    Colby T, Röhrig H, Harzen A et al (2011) Modified metal-oxide affinity enrichment combined with 2D-PAGE and analysis of phosphoproteomes. In: Dissmeyer N, Schnittger A (eds) Plant kinases. Humana Press, New York, pp 273–286Google Scholar
  20. 20.
    Pertl H, Himly M, Gehwolf R et al (2001) Molecular and physiological characterisation of a 14-3-3 protein from lily pollen grains regulating the activity of the plasma membrane H+ ATPase during pollen grain germination and tube growth. Planta 213(1):132–141. doi: 10.1007/s004250000483 CrossRefPubMedGoogle Scholar
  21. 21.
    Pratt JM, Simpson DM, Doherty MK et al (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1(2):1029–1043CrossRefPubMedGoogle Scholar
  22. 22.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi: 10.1038/nbt.1511 CrossRefPubMedGoogle Scholar
  23. 23.
    Steen H, Jebanathirajah JA, Springer M et al (2005) Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci U S A 102(11):3948–3953. doi: 10.1073/pnas.0409536102 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906CrossRefPubMedGoogle Scholar
  25. 25.
    Meier-Schellersheim M, Xu X, Angermann B et al (2006) Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method. PLoS Comput Biol 2(7), e82. doi: 10.1371/journal.pcbi.0020082 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maksim Zakhartsev
    • 1
  • Heidi Pertl-Obermeyer
    • 1
  • Waltraud X. Schulze
    • 1
  1. 1.Plant Systems Biology, Plant PhysiologyUniversity of HohenheimStuttgartGermany

Personalised recommendations