Advertisement

Protocols for In Vitro Propagation, Conservation, Synthetic Seed Production, Embryo Rescue, Microrhizome Production, Molecular Profiling, and Genetic Transformation in Ginger (Zingiber officinale Roscoe.)

  • K. Nirmal BabuEmail author
  • K. Samsudeen
  • Minoo Divakaran
  • Geetha S. Pillai
  • V. Sumathi
  • K. Praveen
  • P. N. Ravindran
  • K. V. Peter
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1391)

Abstract

Ginger is a rhizomatous plant that belongs to the family Zingiberaceae. It is a herbaceous perennial but cultivated as annual, with crop duration of 7–10 months. Ginger is native to India and Tropical South Asia. The tuberous rhizomes or underground stems of ginger are used as condiment, an aromatic stimulant, and food preservative as well as in traditional medicine. Ginger is propagated vegetatively with rhizome bits as seed material. Cultivation of ginger is plagued by rhizome rot diseases, most of which are mainly spread through infected seed rhizomes. Micropropagation will help in production of disease-free planting material. Sexual reproduction is absent in ginger, making recombinant breeding very impossible. In vitro technology can thus become the preferred choice as it can be utilized for multiplication, conservation of genetic resources, generating variability, gene transfer, molecular tagging, and their utility in crop improvement of these crops.

Key words

Anther culture Artificial/synthetic seeds Cryopreservation Embryo rescue In vitro conservation Micropropagation Molecular profiling Plant regeneration Protoplast isolation Somaclonal variation Somatic embryogenesis Transgenics Ginger Zingiber officinale 

Abbreviations

BA

Benzyl adenine

IBA

Indole-3-butyric acid

Kin

Kinetin

NAA

α-Naphthalene acetic acid

MS

Murashige and Skoog

References

  1. 1.
    Purseglove JW (1972) Tropical Crops. Monocotyledons Wiley p 533–554Google Scholar
  2. 2.
    Nirmal Babu K, Sabu M, Shiva KN et al (2011) Ginger. In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement, medicinal plants, vol 6. CRC Press, Boca Raton USA, pp 393–450Google Scholar
  3. 3.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  4. 4.
    Nirmal Babu K, Samsudeen K, Ratnambal MJ (1992) In vitro plant regeneration from leaf derived callus in ginger. Zingiber officinale Rosc Plant Cell Tiss Org Cul 29:71–74CrossRefGoogle Scholar
  5. 5.
    Nirmal Babu K, Samsudeen K, Ravindran PN (1992) Direct regeneration of plantlets from immature inflorescence of ginger (Zingiber officinale Rosc.) by tissue culture. J. Spices and Aromatic Crops 1:43–48Google Scholar
  6. 6.
    Nirmal Babu K, Samsudeen K, Ratnambal M, Ravindran PN (1996) Embryogenesis and plant regeneration from ovary derived callus cultures of ginger (Zingiber officinale Rosc.). J Spices Aromatic Crops 5(2):134–138Google Scholar
  7. 7.
    Samsudeen K, Nirmal Babu K et al (2000) Plant regeneration from anther derived callus cultures of ginger (Zingiber officinale Rosc.). J Hort Sci Biotechnol 75(4):447–450Google Scholar
  8. 8.
    Nirmal Babu K, Samsudeen K, Minoo D et al (2005) Tissue culture and Biotechnology of Ginger. In: Ravindran PN, Nirmal Babu K (eds) Ginger – The genus Zingiber. CRC Press, Boca Raton, USA, pp 181–210Google Scholar
  9. 9.
    Nirmal Babu K, Geetha SP, Minoo D et al (1999) In vitro conservation of germplasm. In: Ghosh SP (ed) Biotechnology and its application in Horticulture. Narosa Publishing House, New Delhi, pp 106–129Google Scholar
  10. 10.
    Yamuna G, Sumathi V, Geetha SP et al (2007) Cryopreservation of in vitro grown shoots of ginger (Zingiber officinale Rosc.). Cryo Letters 28(4):241–252PubMedGoogle Scholar
  11. 11.
    Nirmal Babu K, Minoo D, Parthasarathy VA (2011) Ginger. In: Singh HP, Parthasarathy VA, Nirmal Babu K (eds) Regeneration systems – fruit crops, plantation crops and spices, vol 1, Advances in horticulture biotechnology. Westville Publishing House, New Delhi, pp 421–442Google Scholar
  12. 12.
    Nirmal Babu K, Yamuna G, Praveen K et al (2012) Cryopreservation of spices genetic resources. In: Katkov II (ed) Current frontiers in cryobiology. InTech-Open Access Publisher, Croatia, pp 457–484. ISBN 978-953-51-0191-8Google Scholar
  13. 13.
    Geetha SP, Nirmal Babu K, Rema J et al (2000) Isolation of protoplasts from cardamom (Elettaria cardamomum Maton.) and ginger (Zingiber officinale Rosc.). J Spices and Aromatic Crops 9(1):23–30Google Scholar
  14. 14.
    Ausubel FM, Brent R, Kingston RE et al (1995) Current protocols in molecular biology, vol 1. Wiley, New York, pp 2.3.1–2.3.7Google Scholar
  15. 15.
    Nirmal Babu K, Suraby EJ, Cissin J et al (2013) Status of Transgenics in Indian Spices. J Tropical Agriculture 51:135–151Google Scholar
  16. 16.
    Jefferson RA (1987) Assaying chimeric plant genes: The GUS fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • K. Nirmal Babu
    • 1
    Email author
  • K. Samsudeen
    • 2
  • Minoo Divakaran
    • 3
  • Geetha S. Pillai
    • 4
  • V. Sumathi
    • 1
  • K. Praveen
    • 1
  • P. N. Ravindran
    • 1
  • K. V. Peter
    • 5
  1. 1.All India Coordinated Research Project on SpicesIndian Institute of Spices ResearchKozhikodeIndia
  2. 2.Central Plantation Crops Research InstituteKasaragodIndia
  3. 3.Providence Women’s CollegeKozhikodeIndia
  4. 4.Centre for Medicinal Plants Research, Arya Vaidya SalaKottakkalIndia
  5. 5.World Noni Research FoundationChennaiIndia

Personalised recommendations