Advertisement

Somatic Embryogenesis of Date Palm (Phoenix dactylifera L.) Through Cell Suspension Culture

  • Poornananda M. Naik
  • Jameel M. Al-KhayriEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1391)

Abstract

Date palm (Phoenix dactylifera L.) is the oldest and most economically important plant species distributed in the hot arid regions of the world. Propagation of date palm by seeds produces heterogeneous offspring with inferior field performance and poor fruit quality. Traditionally, date palm is propagated by offshoots, but this method is inefficient for mass propagation because of limited availability of offshoots. Plant regeneration through tissue culture is able to provide technologies for the large-scale propagation of healthy true-to-type plants. The most commonly used technology approach is somatic embryogenesis which presents a great potential for the rapid propagation and genetic resource preservation of this species. Significant progress has been made in the development and optimization of this regeneration pathway through the establishment of embryogenic suspension cultures. This chapter focuses on the methods employed for the induction of callus from shoot tip explants, establishment of cell suspension culture, and subsequent somatic embryogenesis and plant regeneration.

Key words

Callus Cell suspension culture In vitro regeneration Phoenix dactylifera Somatic embryogenesis 

References

  1. 1.
    Al-Khayri JM (2007) Date palm Phoenix dactylifera L. micropropagation. In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 509–526CrossRefGoogle Scholar
  2. 2.
    Biglari F, Al-Karkhi AFM, Easa AM (2008) Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera L.) fruits from Iran. Food Chem 107:1636–1641CrossRefGoogle Scholar
  3. 3.
    El Hadrami A, Al-Khayri JM (2012) Socioeconomic and traditional importance of date palm. Emir J Food Agric 24:371–385Google Scholar
  4. 4.
    El Hadrami I, El Hadrami A (2009) Breeding date palm. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops. Springer, New York, pp 191–216CrossRefGoogle Scholar
  5. 5.
    Vayalil PK (2012) Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr 52:249–271CrossRefPubMedGoogle Scholar
  6. 6.
    Gerritsen ME, Carley WW, Ranges GE, Shen CP, Phan SA, Ligon GF, Perry CA (1995) Flavonoids inhibit cytokine induced endothelial cell adhesion protein gene expression. Am J Pathol 147:278–292PubMedPubMedCentralGoogle Scholar
  7. 7.
    Muldoon MF, Kritchvesky SB (1996) Flavonoids and heart disease. BMJ 312:458–459CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Andlauer W, Furst P (2003) Special characteristics of non-nutrient food constituents of plants—phytochemicals. Introductory lecture. Int J Vitam Nutr Res 73:55–62CrossRefPubMedGoogle Scholar
  9. 9.
    McCue PP, Shetty K (2004) Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac J Clin Nutr 13:101–106PubMedGoogle Scholar
  10. 10.
    Parveez GH, Masri MM, Zainal A, Majid NA, Yunus AM, Fadilah HH, Rasid O, Cheah SC (2000) Transgenic oil palm: production and projection. Biochem Soc Trans 28:969–972CrossRefPubMedGoogle Scholar
  11. 11.
    Engelmann F, Dussert S (2000) Développement de la cryoconservation pour la conservation des ressources génétiques végétales. Agric 9:237–244Google Scholar
  12. 12.
    Al-Khayri JM (2001) Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In Vitro Cell Dev Biol Plant 37:453–456CrossRefGoogle Scholar
  13. 13.
    Sghaier B, Kriaa W, Bahloul M, Jorrín-Novo JV, Drira N (2009) Effect of ABA, arginine and sucrose on protein content of date palm somatic embryos. Sci Hort 120:379–385CrossRefGoogle Scholar
  14. 14.
    Sghaier-Hammami B, Jorrín-Novo JV, Gargouri-Bouzid R, Drira N (2010) Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. Phytochemistry 71:1223–1236CrossRefPubMedGoogle Scholar
  15. 15.
    Al-Khayri JM (2010) Somatic embryogenesis of date palm (Phoenix dactylifera L.) improved by coconut water. Biotechnology 9:477–484CrossRefGoogle Scholar
  16. 16.
    Khierallah HSM, Hussein NH (2013) The role of coconut water and casein hydrolysate in somatic embryogenesis of date palm and genetic stability detection using RAPD markers. Res Biotechnol 4(3):20–28Google Scholar
  17. 17.
    Sidky RA, Zaid ZE (2011) Direct production of somatic embryos and plant regeneration using TDZ and CPPU of date palm (Phoenix dactylifera L.). Int J Acad Res 3:792–796Google Scholar
  18. 18.
    Carlos M, Martinez FX (1998) The potential uses of somatic embryogenesis in agroforestry are not limited to synthetic seed technology. Rev Bras Fisiol Veg 10:1–12Google Scholar
  19. 19.
    Ling JT, Iwamasa M (1994) Somatic hybridization between Citrus reticulata and Citroptis gabunensis through electrofusion. Plant Cell Rep 13:493–497CrossRefPubMedGoogle Scholar
  20. 20.
    Cabrera PJL, Vegas GA, Herrera M (1996) Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes. In Vitro Cell Dev Biol Plant 32:86–90CrossRefGoogle Scholar
  21. 21.
    Engelmann F (2004) Plant germplasm cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433CrossRefGoogle Scholar
  22. 22.
    Jain SM (2005) Major mutation-assisted plant breeding programmes supported by FAO/IAEA. Plant Cell Tiss Org Cult 82:113–123CrossRefGoogle Scholar
  23. 23.
    Jain SM (2007) Recent advances in date palm tissue culture and mutagenesis. Acta Horticult 736:205–211CrossRefGoogle Scholar
  24. 24.
    Jain SM (2010) Mutagenesis in crop improvement under the climate change. Rom Biotechnol Lett 15(2):88–106Google Scholar
  25. 25.
    Abohatem M, Zouine J, El Hadrami I (2011) Low concentrations of BAP and high rate of subcultures improve the establishment and multiplication of somatic embryos in date palm suspension cultures by limiting oxidative browning associated with high levels of total phenols and peroxidase activities. Sci Hort 130:344–348CrossRefGoogle Scholar
  26. 26.
    Sidky RA, Gadalla EG (2013) Somatic embryogenesis in Phoenix dactylifera: maturation, germination and reduction of hyperhydricity during embryogenic cell suspension culture. Arab J Biotech 16(1):119–130Google Scholar
  27. 27.
    Al-Khayri JM (2012) Determination of the date palm cell suspension growth curve, optimum plating efficiency, and influence of liquid medium on somatic embryogenesis. Emir J Food Agric 24(5):444–455Google Scholar
  28. 28.
    Badawy EM, Habib AM, El-Banna AA, Yousry GM (2009) Effect of some factors on somatic embryos formation from callus suspensions cultures in Phoenix dactylifera L. cv. Sakkoty. In: Proceedings of 4th conference on recent technologies in agriculture, Faculty of Agriculture. Cairo University, Cairo, pp 593–599Google Scholar
  29. 29.
    Al-Khayri JM (2013) Factors affecting somatic embryogenesis in date palm (Phoenix dactylifera L.). In: Junaid A, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and genetic transformation in plants. Narosa Publishing House, New Delhi, pp 15–37Google Scholar
  30. 30.
    Al-Khayri JM (2005) Date palm Phoenix dactylifera L. In: Jain SM, Gupta PK (eds) Protocols of somatic embryogenesis in woody plants. Springer, Berlin, pp 309–318Google Scholar
  31. 31.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Agricultural Biotechnology, College of Agriculture and Food SciencesKing Faisal UniversityAl-HassaSaudi Arabia

Personalised recommendations