Establishment, Culture, and Scale-up of Brugmansia candida Hairy Roots for the Production of Tropane Alkaloids

  • Alejandra Beatriz CardilloEmail author
  • Julián Rodriguez Talou
  • Ana María Giulietti
Part of the Methods in Molecular Biology book series (MIMB, volume 1391)


Brugmansia candida (syn. Datura candida) is a South American native plant that produces tropane alkaloids. Hyoscyamine, 6β-hydroxyhyoscyamine (anisodamine), and scopolamine are the most important ones due to their anticholinergic activity. These bioactive compounds have been historically and widely applied in medicine and their demand is continuous. Their chemical synthesis is costly and complex, and thereby, these alkaloids are industrially produced from natural producer plants. The production of these secondary metabolites by plant in vitro cultures such as hairy roots presents certain advantages over the natural source and chemical synthesis. It is well known that hairy roots produced by Agrobacterium rhizogenes infection are fast-growing cultures, genetically stable and able to grow in hormone-free media. Additionally, recent progress achieved in the scaling up of hairy root cultures makes this technology an attractive tool for industrial processes. This chapter is focused on the methods for the induction and establishment of B. candida hairy roots. In addition, the scaling up of hairy root cultures in bioreactors and tropane alkaloid analysis is discussed.

Key words

Brugmansia candida Agrobacterium rhizogenes Hairy root cultures Stirred tank bioreactor Hyoscyamine Scopolamine 6β-hydroxyhyoscyamine 



This work was supported by the Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica, Argentina (ANPCyT), by grants UBACyT 181, PIP 0156, and PICT 2125. A.B.C., J.R.T., and A.M.G. are researchers from CONICET.


  1. 1.
    Oksman-Caldentey KM (2007) Tropane and nicotine alkaloid biosynthesis-novel approaches towards biotechnological production of plant-derived pharmaceuticals. Curr Pharm Biotechnol 8(4):203–210CrossRefPubMedGoogle Scholar
  2. 2.
    Bedewitz MA, Gongora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS (2014) A root-expressed l-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. Plant Cell 26(9):3745–3762CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hashimoto T, Yamada Y (1986) Hyoscyamine 6beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol 81(2):619–625CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Poupko JM, Baskin SI, Moore E (2006) The pharmacological properties of anisodamine. J Appl Toxicol 27(2):116–121CrossRefGoogle Scholar
  5. 5.
    Wang TN, Yang HJ, Gu-Ling, Li JY, Zheng XX (2005) Advanced measurement and quantitative appraise of anisodamine on calcium triggered in cardiac myocyte. In: Engineering in medicine and biology 27th annual conference, Shanghai, China, 1–4 Sept 2005. Proceedings of the 2005 IEEE. pp 7710–7713Google Scholar
  6. 6.
    Wang PY, Chen JW, Hwang F (1993) Anisodamine causes acyl chain interdigitation in phosphatidylglycerol. FEBS Lett 332(1–2):193–196CrossRefPubMedGoogle Scholar
  7. 7.
    Wang H, Lu Y, Chen HZ (2003) Differentiating effects of anisodamine on cognitive amelioration and peripheral muscarinic side effects induced by pilocarpine in mice. Neurosci Lett 344(3):173–176CrossRefPubMedGoogle Scholar
  8. 8.
    Sheng CY, Gao WY, Guo ZR, He LX (1997) Anisodamine restores bowel circulation in burn shock. Burns 23(2):142–146CrossRefPubMedGoogle Scholar
  9. 9.
    Kursinszki L, Hank H, Laszlo I, Szoke E (2005) Simultaneous analysis of hyoscyamine, scopolamine, 6beta-hydroxyhyoscyamine and apoatropine in Solanaceous hairy roots by reversed-phase high-performance liquid chromatography. J Chromatogr A 1091(1–2):32–39CrossRefPubMedGoogle Scholar
  10. 10.
    Palazón J, Moyano E, Cusidó RM, Bonfill M, Oksman-Caldentey K, Piñol MT (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci 165(6):1289–1295CrossRefGoogle Scholar
  11. 11.
    Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci U S A 101(17):6786–6791CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dehghan E, Hakkinen ST, Oksman-Caldentey KM, Shahriari Ahmadi F (2012) Production of tropane alkaloids in diploid and tetraploid plants and in vitro hairy root cultures of Egyptian henbane (Hyoscyamus muticus L.). Plant Cell Tiss Org Cult 110(1):35–44CrossRefGoogle Scholar
  13. 13.
    Samuelsson G (ed) (1999) Drugs of natural origin, 4th edn. Gunnar Samuelsson and Apotekarsocieteten-Swedish Pharmaceutical Society, Swedish Pharmaceutical Press, SwedenGoogle Scholar
  14. 14.
    Palazon J, Navarro-Ocana A, Hernandez-Vazquez L, Mirjalili MH (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13(8):1722–1742CrossRefPubMedGoogle Scholar
  15. 15.
    Naumann A, Kurtze L, Krahmer A, Hagels H, Schulz H (2014) Discrimination of Solanaceae taxa and quantification of scopolamine and hyoscyamine by ATR-FTIR spectroscopy. Planta Med 80(15):1315–1320CrossRefPubMedGoogle Scholar
  16. 16.
    Roses OE, Miño J, Villamil EC (1988) Acción farmacodinámica de las flores de Brugmansia candida. Fitoterapia 59:120–127Google Scholar
  17. 17.
    Giulietti AM, Parr AJ, Rhodes MJ (1993) Tropane alkaloid production in transformed root cultures of Brugmansia candida. Planta Med 59(5):428–431Google Scholar
  18. 18.
    Wu YF, Lü W, Lu Q, Zhang WS (2005) Asymmetric synthesis of anisodine. Chin Chem Lett 16(10):1287–1289Google Scholar
  19. 19.
    Cardillo AB, Otalvaro Alvarez AM, Calabro Lopez A, Velasquez Lozano ME, Rodriguez Talou J, Giulietti AM (2010) Anisodamine production from natural sources: seedlings and hairy root cultures of Argentinean and Colombian Brugmansia candida plants. Planta Med 76(4):402–405CrossRefPubMedGoogle Scholar
  20. 20.
    Diwan R, Malpathak N (2008) Novel technique for scaling up of micropropagated Ruta graveolens shoots using liquid culture systems: a step towards commercialization. N Biotechnol 25(1):85–91CrossRefPubMedGoogle Scholar
  21. 21.
    Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185CrossRefPubMedGoogle Scholar
  22. 22.
    Jaremicz Z, Luczkiewicz M, Kokotkiewicz A, Krolicka A, Sowinski P (2014) Production of tropane alkaloids in Hyoscyamus niger (black henbane) hairy roots grown in bubble-column and spray bioreactors. Biotechnol Lett 36(4):843–853CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346CrossRefPubMedGoogle Scholar
  24. 24.
    Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598CrossRefGoogle Scholar
  25. 25.
    Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158CrossRefPubMedGoogle Scholar
  26. 26.
    Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26(4):318–324CrossRefPubMedGoogle Scholar
  27. 27.
    Nemoto K, Hara M, Suzuki M, Seki H, Oka A, Muranaka T, Mano Y (2009) Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signal Behav 4(12):1145–1147CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alejandra Beatriz Cardillo
    • 1
    Email author
  • Julián Rodriguez Talou
    • 1
  • Ana María Giulietti
    • 1
  1. 1.Cátedra de Biotecnología-Instituto Nanobiotec (UBA/Conicet), Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations