Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants

  • Stéphanie Robert
  • Philippe V. Jutras
  • Moustafa Khalf
  • Marc-André D’Aoust
  • Marie-Claire Goulet
  • Frank Sainsbury
  • Dominique Michaud
Part of the Methods in Molecular Biology book series (MIMB, volume 1385)

Abstract

We previously described a procedure for the use of plant protease inhibitors as “companion” accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265–273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along—and co-migrating—with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.

Keywords

Clinically useful recombinant proteins Heterologous protein expression Recombinant protein degradation Companion protease inhibitors Protein stabilization 

References

  1. 1.
    Sabalza M, Christou P, Capell T (2014) Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett 36:2367–2379CrossRefPubMedGoogle Scholar
  2. 2.
    Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770–1778CrossRefPubMedGoogle Scholar
  3. 3.
    Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432CrossRefPubMedGoogle Scholar
  4. 4.
    Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648CrossRefPubMedGoogle Scholar
  5. 5.
    Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197CrossRefPubMedGoogle Scholar
  6. 6.
    van der Hoorn RA (2008) Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59:191–223CrossRefPubMedGoogle Scholar
  7. 7.
    Gomord V, Sourrouille C, Fitchette A-C, Bardor M, Pagny S, Lerouge P, Faye L (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol J 2:83–100CrossRefPubMedGoogle Scholar
  8. 8.
    De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563CrossRefPubMedGoogle Scholar
  9. 9.
    Badri MA, Rivard D, Coenen K, Michaud D (2009) Unintended molecular interactions in transgenic plants expressing clinically useful proteins: the case of bovine aprotinin traveling the potato leaf cell secretory pathway. Proteomics 9:746–756CrossRefPubMedGoogle Scholar
  10. 10.
    Benchabane M, Saint-Jore-Dupas C, Bardor M, Faye L, Michaud D, Gomord V (2009) Targeting and post-translational processing of human α1-antichymotrypsin in BY-2 tobacco cultured cells. Plant Biotechnol J 7:146–160CrossRefPubMedGoogle Scholar
  11. 11.
    Conley AJ, Joensuu JJ, Richman A, Menassa R (2011) Protein body-inducing fusions for high-level production of recombinant proteins in plants. Plant Biotechnol J 9:419–433CrossRefPubMedGoogle Scholar
  12. 12.
    Mandal MK, Fischer R, Schillberg S, Schiermeyer A (2014) Inhibition of protease activity by antisense RNA improves recombinant protein production in Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells. Biotechnol J 9:1065–1073CrossRefPubMedGoogle Scholar
  13. 13.
    Pillay P, Schlüter U, van Wyk S, Kunert KJ, Vorster BJ (2014) Proteolysis of recombinant proteins in bioengineered plant cells. Bioengineered 5:1–6CrossRefGoogle Scholar
  14. 14.
    Rivard D, Anguenot R, Brunelle F, Le VQ, Vézina L-P, Trépanier S, Michaud D (2006) An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants. Plant Biotechnol J 4:359–368CrossRefPubMedGoogle Scholar
  15. 15.
    Komarnytsky S, Borisjuk N, Yakoby N, Garvey A, Raskin I (2006) Cosecretion of protease inhibitor stabilizes antibodies produced by plant roots. Plant Physiol 141:1185–1193CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Goulet C, Benchabane M, Anguenot R, Brunelle F, Khalf M, Michaud D (2010) A companion protease inhibitor for the protection of cytosol-targeted recombinant proteins in plants. Plant Biotechnol J 8:142–154CrossRefPubMedGoogle Scholar
  17. 17.
    Goulet C, Khalf M, Sainsbury F, D'Aoust M-A, Michaud D (2012) A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnol J 10:83–94CrossRefPubMedGoogle Scholar
  18. 18.
    Pillay P, Kibido T, du Plessis M, van der Vyver C, Beyene G, Vorster BJ, Kunert KJ, Schlüter U (2012) Use of transgenic oryzacystatin-I-expressing plants enhances recombinant protein production. Appl Biochem Biotechnol 168:1608–1620CrossRefPubMedGoogle Scholar
  19. 19.
    Robert S, Khalf M, Goulet M-C, D’Aoust M-A, Sainsbury F, Michaud D (2013) Protection of recombinant mammalian antibodies from development-dependent proteolysis in leaves of Nicotiana benthamiana. PLoS One 8:e70203CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Benchabane M, Rivard D, Girard C, Michaud D (2009) Companion protease inhibitors to protect recombinant proteins in transgenic plant extracts. Methods Mol Biol 483:265–273CrossRefPubMedGoogle Scholar
  21. 21.
    Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1(1):103. doi:10.4172/atbm.1000103 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Benchabane M, Schlüter U, Vorster J, Goulet M-C, Michaud D (2010) Plant cystatins. Biochimie 92:1657–1666CrossRefPubMedGoogle Scholar
  23. 23.
    D’Aoust M-A, Lavoie P-O, Belles-Isles J, Bechtold N, Martel M, Vézina L-P (2009) Transient expression of antibodies in plants using syringe agroinfiltration. Methods Mol Biol 483:41–49CrossRefPubMedGoogle Scholar
  24. 24.
    Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp 77:e50521Google Scholar
  25. 25.
    Vézina L-P, Faye L, Lerouge P, D’Aoust M-A, Marquet-Blouin E, Burel C, Lavoie P-O, Bardor M, Gomord V (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442–455CrossRefPubMedGoogle Scholar
  26. 26.
    Ascenzi P, Bocedi A, Bolognesi M, Spallarossa A, Coletta M, De Cristofaro R, Menegatti A (2003) The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr Protein Pept Sci 4:231–251CrossRefPubMedGoogle Scholar
  27. 27.
    Rubin H (1992) The biology and biochemistry of antichymotrypsin and its potential role as a therapeutic agent. Biol Chem Hoppe-Seyler 373:497–502CrossRefPubMedGoogle Scholar
  28. 28.
    Goulet M-C, Dallaire C, Vaillancourt L-P, Khalf M, Badri MA, Preradov A, Duceppe M-O, Goulet C, Cloutier C, Michaud D (2008) Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. Plant Physiol 146:1010–1019CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sainsbury F, Varennes-Jutras P, Goulet M-C, D’Aoust M-A, Michaud D (2013) Tomato cystatin SlCYS8 as a stabilizing fusion partner for human serpin expression in plants. Plant Biotechnol J 11:1058–1068CrossRefPubMedGoogle Scholar
  30. 30.
    Badri A, Rivard D, Coenen K, Vaillancourt L-P, Goulet C, Michaud D (2009) A SELDI-TOF MS procedure for the detection, quantitation and preliminary characterization of low-molecular-weight recombinant proteins expressed in transgenic plants. Proteomics 9:233–241CrossRefPubMedGoogle Scholar
  31. 31.
    Sainsbury F, Thuenemann EC, Lommonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693CrossRefPubMedGoogle Scholar
  32. 32.
    Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956CrossRefPubMedGoogle Scholar
  33. 33.
    Smith BJ (1984) SDS polyacrylamide gel electrophoresis of proteins. In: Walker JM (ed) Methods in molecular biology, vol. 1 Proteins. Humana, Clifton, NJ, pp 41–55Google Scholar
  34. 34.
    Gooderham K (1984) Transfer techniques in protein blotting. In: Walker JM (ed) Methods in molecular biology, vol. 1 Proteins. Humana, Clifton, NJ, pp 165–178Google Scholar
  35. 35.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  36. 36.
    Sainsbury F, Benchabane M, Goulet M-C, Michaud D (2012) Multimodal protein constructs for herbivore insect control. Toxins 4:455–475CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Choi J, Diao H, Feng Z-C, Lau A, Wang R, Jevnikar AM, Ma S (2014) A fusion protein derived from plants holds promising potential as a new oral therapy for type 2 diabetes. Plant Biotechnol J 12:425–435CrossRefPubMedGoogle Scholar
  38. 38.
    Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol 152:622–633CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Spitsin S, Andrianov V, Pogrebnyak N, Smirnov Y, Borisjuk N, Portocarrero C, Veguilla V, Koprowski H, Golovkin M (2009) Immunological assessment of plant-derived avian flu H5/HA1 variants. Vaccine 27:1289–1292CrossRefPubMedGoogle Scholar
  40. 40.
    Pinkhasov J, Alvarez ML, Rigano MM, Piensook K, Larios D, Pabst M, Grass J, Mukherjee P, Gendler SJ, Walmsley AM, Mason HS (2011) Recombinant plant-expressed tumour-associated MUC1 peptide is immunogenic and capable of breaking tolerance in MUC1.Tg mice. Plant Biotechnol J 9:991–1001CrossRefPubMedGoogle Scholar
  41. 41.
    Matoba N, Kajiura H, Cherni I, Doran JD, Bomsel M, Fujiyama K, Mor TS (2009) Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB-MPR. Plant Biotechnol J 7:129–145CrossRefPubMedGoogle Scholar
  42. 42.
    Werner S, Marillonnet S, Hause G, Klimyuk V, Gleba Y (2006) Immunoabsorbent nanoparticles based on a tobamovirus displaying protein A. Proc Natl Acad Sci U S A 103:17678–17683CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stéphanie Robert
    • 1
  • Philippe V. Jutras
    • 1
  • Moustafa Khalf
    • 1
  • Marc-André D’Aoust
    • 2
  • Marie-Claire Goulet
    • 1
  • Frank Sainsbury
    • 1
    • 3
  • Dominique Michaud
    • 1
  1. 1.Centre de Recherche et d’Innovation sur les VégétauxUniversité LavalQuébecCanada
  2. 2.Medicago Inc.QuébecCanada
  3. 3.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaAustralia

Personalised recommendations