Next-Generation Pathology

  • Peter D. Caie
  • David J. Harrison
Part of the Methods in Molecular Biology book series (MIMB, volume 1386)


The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient’s tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.

Key words

Histopathology Integrative pathology Systems pathology Spatial heterogeneity Predictive models Cancer pathology Multi-omics Image analysis 


  1. 1.
    Sottoriva A, Kang H, Ma Z, Graham TA (2015) A Big Bang model of human colorectal tumor growth. Nat Genet 47(3):209–216PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Kopetz S, Tabernero J, Rosenberg R, Jiang ZQ, Moreno V, Bachleitner-Hofmann T et al (2015) Genomic classifier ColoPrint predicts recurrence in stage ii colorectal cancer patients more accurately than clinical factors. Oncologist 20(2):127–133PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Srivastava G, Renfro LA, Behrens RJ, Lopatin M, Chao C, Soori GS et al (2014) Prospective multicenter study of the impact of oncotype DX colon cancer assay results on treatment recommendations in stage II colon cancer patients. Oncologist 19(5):492–497PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C et al (2013) Towards the introduction of the “Immunoscore” in the classification of malignant tumors. J Pathol 232(2):199–209PubMedCentralCrossRefGoogle Scholar
  5. 5.
    Yuan Y (2015) Modelling the spatial heterogeneity and molecular correlates of lymphocytic infiltration in triple-negative breast cancer. J R Soc Interface. doi:10.1098/rsif.2014.1153Google Scholar
  6. 6.
    Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A et al (2015) Stromal contribution to the colorectal cancer transcriptome. Nat Genet 47(4):312–319CrossRefPubMedGoogle Scholar
  7. 7.
    Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M et al (2015) Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47(4):320–329CrossRefPubMedGoogle Scholar
  8. 8.
    Caie PD, Walls RE, Ingleston-Orme A, Daya S, Houslay T, Eagle R et al (2010) High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol Cancer Ther 9(6):1913–1926CrossRefPubMedGoogle Scholar
  9. 9.
    Rimm DL (2014) Next-gen immunohistochemistry. Nat Methods 11(4):381–383CrossRefPubMedGoogle Scholar
  10. 10.
    Inamura K, Yamauchi M, Nishihara R, Kim SA, Mima K, Sukawa Y et al (2015) Prognostic significance and molecular features of signet-ring cell and mucinous components in colorectal carcinoma. Ann Surg Oncol 22(4):1226–1235CrossRefPubMedGoogle Scholar
  11. 11.
    Almendro V, Kim HJ, Cheng YK, Gonen M, Itzkovitz S, Argani P et al (2014) Genetic and phenotypic diversity in breast tumor metastases. Cancer Res 74(5):1338–1348PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Karagoz K, Sinha R, Arga KY (2015) Triple negative breast cancer: a multi-omics network discovery strategy for candidate targets and driving pathways. Omics 19(2):115–130CrossRefPubMedGoogle Scholar
  13. 13.
    Roden AC, Garcia JJ, Wehrs RN, Colby TV, Khoor A, Leslie KO et al (2014) Histopathologic, immunophenotypic and cytogenetic features of pulmonary mucoepidermoid carcinoma. Mod Pathol 27(11):1479–1488CrossRefPubMedGoogle Scholar
  14. 14.
    Le Cao KA, Gonzalez I, Dejean S (2009) integrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics 25(21):2855–2856PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Day RS, McDade KK, Chandran UR, Lisovich A, Conrads TP, Hood BL et al (2011) Identifier mapping performance for integrating transcriptomics and proteomics experimental results. BMC Bioinformatics 12:213PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Miyoshi NS, Pinheiro DG, Silva WA Jr, Felipe JC (2013) Computational framework to support integration of biomolecular and clinical data within a translational approach. BMC Bioinformatics 14:180PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hood L, Friend SH (2011) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8(3):184–187CrossRefPubMedGoogle Scholar
  18. 18.
    Faratian D, Goltsov A, Lebedeva G, Sorokin A, Moodie S, Mullen P et al (2009) Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 69(16):6713–6720CrossRefPubMedGoogle Scholar
  19. 19.
    Almendro V, Cheng YK, Randles A, Itzkovitz S, Marusyk A, Ametller E et al (2014) Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep 6(3):514–527PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Madhavan S, Gusev Y, Natarajan TG, Song L, Bhuvaneshwar K, Gauba R et al (2013) Genome-wide multi-omics profiling of colorectal cancer identifies immune determinants strongly associated with relapse. Front Genet 4:236PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Quantitative and systems pathologyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations