Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine

  • Alexandru Mizeranschi
  • Derek Groen
  • Joris Borgdorff
  • Alfons G. Hoekstra
  • Bastien Chopard
  • Werner DubitzkyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1386)


Systems medicine is the application of systems biology concepts, methods, and tools to medical research and practice. It aims to integrate data and knowledge from different disciplines into biomedical models and simulations for the understanding, prevention, cure, and management of complex diseases. Complex diseases arise from the interactions among disease-influencing factors across multiple levels of biological organization from the environment to molecules. To tackle the enormous challenges posed by complex diseases, we need a modeling and simulation framework capable of capturing and integrating information originating from multiple spatiotemporal and organizational scales. Multiscale modeling and simulation in systems medicine is an emerging methodology and discipline that has already demonstrated its potential in becoming this framework. The aim of this chapter is to present some of the main concepts, requirements, and challenges of multiscale modeling and simulation in systems medicine.

Key words

Systems medicine Complex disease Modeling and simulation Multiscale modeling and simulation 



A.G. Hoekstra acknowledges partial funding by Russian Scientific Foundation, grant # 14-11-00826.


  1. 1.
    Craig J (2008) Complex diseases: research and applications. Nat Educ 1(1):184Google Scholar
  2. 2.
    Bousquet J, Anto JM, Sterk PJ, Adock IM, Chung KF, Roca J et al (2011) Systems medicine and integrated care to combat chronic noncommunicable diseases. Genome Med 3(7):43PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Hood L, Friend SH (2012) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8(3):184–187CrossRefGoogle Scholar
  4. 4.
    Capobianco E (2012) Ten challenges for systems medicine. Front Genet 3(193):1–4Google Scholar
  5. 5.
    Calzolari D, Bruschi S, Coquin L, Schofield J, Feala JD, Reed JC, McCulloch AD, Paternostro G (2008) Search algorithms as a framework for the optimization of drug combinations. PLoS Comput Biol 4(12):e1000249PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Von Bertalanffy L (1969) General systems theory. Braziller, New YorkGoogle Scholar
  7. 7.
    Sloot PMA, Hoekstra AG (2010) Multi-scale modelling in computational biomedicine. Brief Bioinform 11(1):142–152CrossRefPubMedGoogle Scholar
  8. 8.
    Hunter PJ, Borg TK (2003) Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol 4:237–243CrossRefPubMedGoogle Scholar
  9. 9.
    Hunter P, Nielsen P (2005) A strategy for integrative computational physiology. Physiology (Bethesda) 20(5):316–325CrossRefGoogle Scholar
  10. 10.
    Noble D (2002) Modeling the heart – from genes to cells to the whole organ. Science 295(5560):1678–1682CrossRefPubMedGoogle Scholar
  11. 11.
    Dada JO, Mendes P (2011) Multi-scale modelling and simulation in systems biology. Integr Biol 2011(3):86–96CrossRefGoogle Scholar
  12. 12.
    Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I (2011) Modeling formalisms in systems biology. AMB Express 1:45PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI – a Complex Pathway Simulator. Bioinformatics 22(24):3067–3074CrossRefPubMedGoogle Scholar
  14. 14.
    Bois FY (2009) GNU MCSim: Bayesian statistical inference for SBML-coded systems biology models. Bioinformatics 25(11):1453–1454CrossRefPubMedGoogle Scholar
  15. 15.
    Adams R, Clark A, Yamaguchi A, Hanlon N, Tsorman B, Ali S, Lebedeva G, Goltsov A, Sorokin A, Akman OE, Troein C, Millar AJ, Goryanin I, Gilmore S (2013) SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology. Bioinformatics 29(5):664–665PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Butterworth E, Jardine BE, Raymond GM, Neal ML, Bassingthwaighte JB (2014) JSim, an open-source modeling system for data analysis. F1000Res 2:288Google Scholar
  17. 17.
    Barlas Y (1994) Model validation in systems dynamics. Int’l systems dynamics conference, p 1–10Google Scholar
  18. 18.
    Chopard B, Borgdorff J, Hoekstra AG (2014) A framework for multi-scale modelling. Phil Trans R Soc A 372(2021):20130378PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Borgdorff J, Falcone J-L, Eric Lorenz E, Bona-Casas C, Chopard B, Hoekstra AG (2013) Foundations of distributed multiscale computing: Formalization, specification, and analysis. J Parallel Distrib Comput 73:465–483CrossRefGoogle Scholar
  20. 20.
    Borgdorff J, Mamonski M, Bosak B, Kurowski K, Ben Belgacem M, Chopard B, Groen D, Coveney PV, Hoekstra AG (2014) Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment. J Comput Sci 2014(5):719–731CrossRefGoogle Scholar
  21. 21.
    Walker D, Southgate JS, Hill G, Holcombe M, Hose D, Wood S, MacNeil S, Smallwood R (2009) The epitheliome: modelling the social behavior of cells. Biosystems 76:89–100CrossRefGoogle Scholar
  22. 22.
    Noble D (2006) The music of life: biology beyond the genome. Oxford University Press, OxfordGoogle Scholar
  23. 23.
    An G, Mi Q, Dutta-Moscato J, Vodovotz Y (2009) Agent-based models in translational systems biology. Wiley Interdiscip Rev Syst Biol Med 1(2):159–171PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Evans DJW, Lawford PV, Gunn J, Walker E, Hose DR, Smallwood RH, Chopard B, Krafczyk M, Bernsdorf J, Hoekstra A (2008) The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Philos Trans A Math Phys Eng Sci 366:3343–3360CrossRefPubMedGoogle Scholar
  25. 25.
    Groen D, Borgdorff J, Bona-Casas C, Hetherington J, Nash RW, Zasada SJ, Saverchenko I, Mamonski M, Kurowski K, Bernabeu MO, Hoekstra AG, Coveney PV (2013) Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations. Interface Focus 3(2):2013CrossRefGoogle Scholar
  26. 26.
    Tahir H, Hoekstra AG, Lorenz E, Lawford PV, Hose DR, Gunn J, Evans DJW (2011) Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design. Interface Focus 1(3):365–373PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Tahir H, Bona-Casas C, Hoekstra AG (2013) Modelling the effect of a functional endothelium on the development of in-stent restenosis. PLoS One 8(6):e66138PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Amatruda CM, Casas CB, Keller BK, Tahir H, Dubini G, Hoekstra AG, Hose DR, Lawford P, Migliavacca F, Narracott AJ, Gunn J (2014) From histology and imaging data to models for in-stent restenosis. Int J Artif Organs 37(10):786–800CrossRefPubMedGoogle Scholar
  29. 29.
    Tahir H, Bona-Casas C, Narracott AJ, Iqbal J, Gunn J, Lawford P, Hoekstra AG (2014) Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling. J R Soc Interface 11(94):20140022PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Groen D, Zasada SJ, Coveney PV (2014) Survey of multiscale and multiphysics applications and communities. Comput Sci Eng 16(2):34–43CrossRefGoogle Scholar
  31. 31.
    Schnell S, Grima R, Maini PK (2007) Multiscale modeling in biology: new insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest. Am Sci 95:134–142CrossRefGoogle Scholar
  32. 32.
    Hoekstra AG, Chopard B, Coveney P (2014) Multiscale modelling and simulation: a position paper. Phil Trans R Soc A 372(2021):20130377CrossRefPubMedGoogle Scholar
  33. 33.
    Yang A, Marquardt W (2009) An ontological conceptualization of multiscale models. Comput Chem Eng 2009(33):822–837CrossRefGoogle Scholar
  34. 34.
    Damle S, Davidson E (2012) Synthetic in vivo validation of gene network circuitry. Proc Natl Acad Sci 109(5):1548–1553PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Borgdorff J, Belgacem MB, Bona-Casas C, Fazendeiro L, Groen D, Hoenen O, Mizeranschi A, Suter JL, Coster D, Coveney PV, Dubitzky W, Hoekstra AG, Strand P, Chopard B (2014) Performance of distributed multiscale simulations. Phil Trans A 372(2021):20130407CrossRefGoogle Scholar
  36. 36.
    Ciepiela E, Wilk B, Harężlak D, Kasztelnik M, Pawlik M, Bubak M (2014) Towards provisioning of reproducible, reviewable and reusable in-silico experiments with the GridSpace2 Platform. In: Bubak M, Kitowski J, Wiatr K (eds) eScience on distributed computing infrastructure, LNCS, vol 8500. Springer, Switzerland. p 118–129.
  37. 37.
    Piacentini A, Morel T, Thevenin A, Duchaine F (2011) Open-PALM: an open source dynamic parallel coupler. Proceedings of the 4th International conference on computational methods for coupled problems in science and engineering, Kos, Greece, p 20–22Google Scholar
  38. 38.
    Mitha F, Lucas TA, Feng F, Kepler TB, Chan C (2008) The Multiscale Systems Immunology project: software for cell-based immunological simulation. Source Code Biol Med 3:6PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Collier N, North M (2012) Repast HPC: a platform for large-scale agent-based modeling. In: Dubitzky W, Kurowski K, Schott B (eds) Large-scale computing techniques for complex system simulations. John Wiley, and Sons, Inc., Hoboken, NJ, pp 81–110CrossRefGoogle Scholar
  40. 40.
    Falcone J-L, Chopard B, Hoekstra A (2012) MML: towards a Multiscale Modeling Language. Procedia Comput Sci 1(2012):819–826Google Scholar
  41. 41.
    Carson JS (2002) Model verification and validation. In: Yücesan E, Chen CH, Snowdon J, Charnes J (eds) The 2002 winter simulation conference, p 52–58Google Scholar
  42. 42.
    Davison AP (2010) Challenges and solutions in replicability and provenance tracking for simulation projects. BMC Neurosci 11(Supp. 1):P76PubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mark V (2013) Biology: the big challenges of big data. Nature 498:255–260CrossRefGoogle Scholar
  44. 44.
    Krauter K, Buyya R, Maheswaran M (2002) A taxonomy and survey of grid resource management systems for distributed computing. Softw Pract Exp 32:135–164CrossRefGoogle Scholar
  45. 45.
    Castillo C, Rouskas G, Harfoush K (2011) Online algorithms for advance resource reservations. J Parallel Distrib Comput 71(7):963–973CrossRefGoogle Scholar
  46. 46.
    Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Martone ME, Zaslavsky I, Gupta A, Memon A, Tran J, Wong W, Fong L, Larson SD, Ellisman MH (2008) The Smart Atlas: spatial and semantic strategies for multiscale integration of brain data. In: Burger A, Davidson D, Baldock R (eds) Anatomy ontologies for bioinformatics, p 267–286Google Scholar
  48. 48.
    Fish J (2009) Multiscale methods: bridging the scales in science and engineering. Oxford University Press, OxfordCrossRefGoogle Scholar
  49. 49.
    Hoekstra AG, Copard B, Lawford P (2013) Multiscale modelling. In: Coveney P, Díaz-Zuccarini V, Hunter P, Viceconti M (eds) Computational biomedicine. Oxford University Press, Oxford, pp 138–159Google Scholar
  50. 50.
    Viceconti M (2012) Multiscale modeling of the skeletal system. Cambridge University Press, New YorkGoogle Scholar
  51. 51.
    Hunter P, Chapman T, Coveney PV, de Bono B, Diaz V, Fenner J, Frangi AF, Harris P, Hose R, Kohl P, Lawford P, McCormack K, Mendes M, Omholt S, Quarteroni A, Shublaq N, Skår J, Stroetmann K, Tegner J, Thomas SR, Tollis I, Tsamardinos I, van Beek JHGM, Viceconti M (2013) A vision and strategy for the virtual physiological human: 2012 update. Interface Focus 3:20130004PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandru Mizeranschi
    • 1
  • Derek Groen
    • 2
  • Joris Borgdorff
    • 3
  • Alfons G. Hoekstra
    • 4
    • 5
  • Bastien Chopard
    • 6
  • Werner Dubitzky
    • 1
    • 7
    Email author
  1. 1.Biomedical Sciences Research InstituteUniversity of UlsterCo. LondonderryUK
  2. 2.Chemistry Department, Centre for Computational ScienceUniversity College LondonLondonUK
  3. 3.Netherlands eScience CenterAmsterdamThe Netherlands
  4. 4.Computational Science Lab, Institute for Informatics, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
  5. 5.Advanced Computing LabITMO UniversitySt. PetersburgRussia
  6. 6.Computer Science DepartmentUniversity of GenevaCarougeSwitzerland
  7. 7.School of Biomedical SciencesUniversity of UlsterCo. LondonderryUK

Personalised recommendations