Advertisement

Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

  • Dominic J. Gessler
  • Guangping GaoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1382)

Abstract

Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.

Key words

Gene therapy CNS Metabolic disorders AAV Retrovirus Phenylketonuria Canavan’s disease Niemann–Pick disease 

References

  1. 1.
    Wang D, Zhong L, Nahid MA, Gao G (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11:345–364PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Rebuffat A, Harding CO, Ding Z, Thony B (2010) Comparison of adeno-associated virus pseudotype 1, 2, and 8 vectors administered by intramuscular injection in the treatment of murine phenylketonuria. Hum Gene Ther 21:463–477PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mueller C et al (2012) Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther 20:590–600PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    McGovern MM et al (2008) A prospective, cross-sectional survey study of the natural history of Niemann-Pick disease type B. Pediatrics 122:e341–e349PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Vanier MT (2010) Niemann-Pick disease type C. Orphanet J Rare Dis 5:16PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Brady RO, Kanfer JN, Mock MB, Fredrickson DS (1966) The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick disease. Proc Natl Acad Sci U S A 55:366–369PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kolodny EH (2000) Niemann-Pick disease. Curr Opin Hematol 7:48–52PubMedCrossRefGoogle Scholar
  8. 8.
    McGovern MM, Aron A, Brodie SE, Desnick RJ, Wasserstein MP (2006) Natural history of Type A Niemann-Pick disease: possible endpoints for therapeutic trials. Neurology 66:228–232PubMedCrossRefGoogle Scholar
  9. 9.
    Walterfang M et al (2012) Dysphagia as a risk factor for mortality in Niemann-Pick disease type C: systematic literature review and evidence from studies with miglustat. Orphanet J Rare Dis 7:76PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    NP-C Guidelines Working Group et al (2009) Recommendations on the diagnosis and management of Niemann-Pick disease type C. Mol Genet Metab 98:152–165CrossRefGoogle Scholar
  11. 11.
    Schuchman EH (2007) The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. J Inherit Metab Dis 30:654–663PubMedCrossRefGoogle Scholar
  12. 12.
    Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281:249–254PubMedCrossRefGoogle Scholar
  13. 13.
    Landrieu P, Said G (1984) Peripheral neuropathy in type A Niemann-Pick disease. A morphological study. Acta Neuropathol 63:66–71PubMedCrossRefGoogle Scholar
  14. 14.
    McGovern MM et al (2004) Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr 145:77–81PubMedCrossRefGoogle Scholar
  15. 15.
    Wasserstein MP et al (2003) Growth restriction in children with type B Niemann-Pick disease. J Pediatr 142:424–428PubMedCrossRefGoogle Scholar
  16. 16.
    McGovern MM et al (2004) Ocular manifestations of Niemann-Pick disease type B. Ophthalmology 111:1424–1427PubMedCrossRefGoogle Scholar
  17. 17.
    Spiegel R et al (2009) The clinical spectrum of fetal Niemann-Pick type C. Am J Med Genet A 149A:446–450PubMedCrossRefGoogle Scholar
  18. 18.
    Fink JK et al (1989) Clinical spectrum of Niemann-Pick disease type C. Neurology 39:1040–1049PubMedCrossRefGoogle Scholar
  19. 19.
    Graber D, Salvayre R, Levade T (1994) Accurate differentiation of neuronopathic and nonneuronopathic forms of Niemann-Pick disease by evaluation of the effective residual lysosomal sphingomyelinase activity in intact cells. J Neurochem 63:1060–1068PubMedCrossRefGoogle Scholar
  20. 20.
    Vanier MT et al (1985) Biochemical studies in Niemann-Pick disease. III. In vitro and in vivo assays of sphingomyelin degradation in cultured skin fibroblasts and amniotic fluid cells for the diagnosis of the various forms of the disease. Clin Genet 27:20–32PubMedCrossRefGoogle Scholar
  21. 21.
    Carstea ED et al (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231PubMedCrossRefGoogle Scholar
  22. 22.
    Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64:269–281PubMedCrossRefGoogle Scholar
  23. 23.
    Dhami R, Schuchman EH (2004) Mannose 6-phosphate receptor-mediated uptake is defective in acid sphingomyelinase-deficient macrophages: implications for Niemann-Pick disease enzyme replacement therapy. J Biol Chem 279:1526–1532PubMedCrossRefGoogle Scholar
  24. 24.
    Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1:462–468PubMedGoogle Scholar
  25. 25.
    Sands MS, Davidson BL (2006) Gene therapy for lysosomal storage diseases. Mol Ther 13:839–849PubMedCrossRefGoogle Scholar
  26. 26.
    Mencarelli C, Martinez-Martinez P (2013) Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 70:181–203PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Jiang W, Ogretmen B (2014) Autophagy paradox and ceramide. Biochim Biophys Acta 1841(5):783–792PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Rego A et al (2012) Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS One 7:e48571PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Schuchman EH (2010) Acid sphingomyelinase, cell membranes and human disease: lessons from Niemann-Pick disease. FEBS Lett 584:1895–1900PubMedCrossRefGoogle Scholar
  30. 30.
    Smith EL, Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 22:3419–3431PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Miyawaki S, Mitsuoka S, Sakiyama T, Kitagawa T (1982) Sphingomyelinosis, a new mutation in the mouse: a model of Niemann-Pick disease in humans. J Hered 73:257–263PubMedGoogle Scholar
  32. 32.
    Pentchev PG et al (1980) A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim Biophys Acta 619:669–679PubMedCrossRefGoogle Scholar
  33. 33.
    Pentchev PG et al (1984) A genetic storage disorder in BALB/C mice with a metabolic block in esterification of exogenous cholesterol. J Biol Chem 259:5784–5791PubMedGoogle Scholar
  34. 34.
    Nakashima S et al (1984) A mouse model for Niemann-Pick disease: phospholipid class and fatty acid composition of various tissues. J Lipid Res 25:219–227PubMedGoogle Scholar
  35. 35.
    Horinouchi K, Sakiyama T, Pereira L, Lalley PA, Schuchman EH (1993) Mouse models of Niemann-Pick disease: mutation analysis and chromosomal mapping rule out the type A and B forms. Genomics 18:450–451PubMedCrossRefGoogle Scholar
  36. 36.
    Horinouchi K et al (1995) Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat Genet 10:288–293PubMedCrossRefGoogle Scholar
  37. 37.
    Otterbach B, Stoffel W (1995) Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell 81:1053–1061PubMedCrossRefGoogle Scholar
  38. 38.
    Marathe S et al (2000) Creation of a mouse model for non-neurological (type B) Niemann-Pick disease by stable, low level expression of lysosomal sphingomyelinase in the absence of secretory sphingomyelinase: relationship between brain intra-lysosomal enzyme activity and central nervous system function. Hum Mol Genet 9:1967–1976PubMedCrossRefGoogle Scholar
  39. 39.
    Maue RA et al (2012) A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum Mol Genet 21:730–750PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Loftus SK et al (1997) Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277:232–235PubMedCrossRefGoogle Scholar
  41. 41.
    Gartner JC Jr et al (1986) Progression of neurovisceral storage disease with supranuclear ophthalmoplegia following orthotopic liver transplantation. Pediatrics 77:104–106PubMedCentralPubMedGoogle Scholar
  42. 42.
    Daloze P et al (1977) Replacement therapy for inherited enzyme deficiency: liver orthotopic transplantation in Niemann-Pick disease type A. Am J Med Genet 1:229–239PubMedCrossRefGoogle Scholar
  43. 43.
    Scaggiante B et al (1987) Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane. Transplantation 44:59–61PubMedCrossRefGoogle Scholar
  44. 44.
    Victor S et al (2003) Niemann-Pick disease: sixteen-year follow-up of allogeneic bone marrow transplantation in a type B variant. J Inherit Metab Dis 26:775–785PubMedCrossRefGoogle Scholar
  45. 45.
    Bayever E et al (1992) Bone marrow transplantation for Niemann-Pick type IA disease. J Inherit Metab Dis 15:919–928PubMedCrossRefGoogle Scholar
  46. 46.
    Vellodi A, Hobbs JR, O’Donnell NM, Coulter BS, Hugh-Jones K (1987) Treatment of Niemann-Pick disease type B by allogeneic bone marrow transplantation. Br Med J (Clin Res Ed) 295:1375–1376CrossRefGoogle Scholar
  47. 47.
    Miranda SR et al (2000) Infusion of recombinant human acid sphingomyelinase into Niemann-Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J 14:1988–1995PubMedCrossRefGoogle Scholar
  48. 48.
    Suchi M et al (1992) Retroviral-mediated transfer of the human acid sphingomyelinase cDNA: correction of the metabolic defect in cultured Niemann-Pick disease cells. Proc Natl Acad Sci U S A 89:3227–3231PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Miranda SR, Erlich S, Friedrich VL Jr, Gatt S, Schuchman EH (2000) Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann-Pick disease. Gene Ther 7:1768–1776PubMedCrossRefGoogle Scholar
  50. 50.
    Jin HK, Carter JE, Huntley GW, Schuchman EH (2002) Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest 109:1183–1191PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Jin HK, Schuchman EH (2003) Ex vivo gene therapy using bone marrow-derived cells: combined effects of intracerebral and intravenous transplantation in a mouse model of Niemann-Pick disease. Mol Ther 8:876–885PubMedCrossRefGoogle Scholar
  52. 52.
    Barbon CM et al (2005) AAV8-mediated hepatic expression of acid sphingomyelinase corrects the metabolic defect in the visceral organs of a mouse model of Niemann-Pick disease. Mol Ther 12:431–440PubMedCrossRefGoogle Scholar
  53. 53.
    Passini MA et al (2005) AAV vector-mediated correction of brain pathology in a mouse model of Niemann-Pick A disease. Mol Ther 11:754–762PubMedCrossRefGoogle Scholar
  54. 54.
    Dodge JC et al (2005) Gene transfer of human acid sphingomyelinase corrects neuropathology and motor deficits in a mouse model of Niemann-Pick type A disease. Proc Natl Acad Sci U S A 102:17822–17827PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Passini MA et al (2007) Combination brain and systemic injections of AAV provide maximal functional and survival benefits in the Niemann-Pick mouse. Proc Natl Acad Sci U S A 104:9505–9510PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Salegio EA et al (2010) Magnetic resonance imaging-guided delivery of adeno-associated virus type 2 to the primate brain for the treatment of lysosomal storage disorders. Hum Gene Ther 21:1093–1103PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Bu J et al (2012) Merits of combination cortical, subcortical, and cerebellar injections for the treatment of Niemann-Pick disease type A. Mol Ther 20:1893–1901PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Salegio EA et al (2012) Safety study of adeno-associated virus serotype 2-mediated human acid sphingomyelinase expression in the nonhuman primate brain. Hum Gene Ther 23:891–902PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Woo SL, Lidsky AS, Guttler F, Chandra T, Robson KJ (1983) Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 306:151–155PubMedCrossRefGoogle Scholar
  60. 60.
    Folling I (1994) The discovery of phenylketonuria. Acta Paediatr 407:4–10CrossRefGoogle Scholar
  61. 61.
    National Institutes of Health Consensus Development Panel (2001) National Institutes of Health Consensus Development Conference Statement: phenylketonuria: screening and management, October 16–18, 2000. Pediatrics 108:972–982CrossRefGoogle Scholar
  62. 62.
    Loeber JG (2007) Neonatal screening in Europe; the situation in 2004. J Inherit Metab Dis 30:430–438PubMedCrossRefGoogle Scholar
  63. 63.
    Ozalp I et al (2001) Newborn PKU screening in Turkey: at present and organization for future. Turk J Pediatr 43:97–101PubMedGoogle Scholar
  64. 64.
    White DA, Waisbren S, van Spronsen FJ (2010) The psychology and neuropathology of phenylketonuria. Mol Genet Metab 99(Suppl 1):S1–S2PubMedCrossRefGoogle Scholar
  65. 65.
    Pietz J, Benninger C, Schmidt H, Scheffner D, Bickel H (1988) Long-term development of intelligence (IQ) and EEG in 34 children with phenylketonuria treated early. Eur J Pediatr 147:361–367PubMedCrossRefGoogle Scholar
  66. 66.
    Lichter-Konecki U, Hipke CM, Konecki DS (1999) Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues. Mol Genet Metab 67:308–316PubMedCrossRefGoogle Scholar
  67. 67.
    Barranger JA, Geiger PJ, Huzino A, Bessman SP (1972) Isozymes of phenylalanine hydroxylase. Science 175:903–905PubMedCrossRefGoogle Scholar
  68. 68.
    Robson KJ, Chandra T, MacGillivray RT, Woo SL (1982) Polysome immunoprecipitation of phenylalanine hydroxylase mRNA from rat liver and cloning of its cDNA. Proc Natl Acad Sci U S A 79:4701–4705PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Udenfriend S, Cooper JR (1952) The enzymatic conversion of phenylalanine to tyrosine. J Biol Chem 194:503–511PubMedGoogle Scholar
  70. 70.
    Li J, Dangott LJ, Fitzpatrick PF (2010) Regulation of phenylalanine hydroxylase: conformational changes upon phenylalanine binding detected by hydrogen/deuterium exchange and mass spectrometry. Biochemistry 49:3327–3335PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Surtees R, Blau N (2000) The neurochemistry of phenylketonuria. Eur J Pediatr 159(Suppl 2):S109–S113PubMedCrossRefGoogle Scholar
  72. 72.
    Friedman PA, Kaufman S, Kang ES (1972) Nature of the molecular defect in phenylketonuria and hyperphenylalaninaemia. Nature 240:157–159PubMedCrossRefGoogle Scholar
  73. 73.
    Justice P, O’Flynn ME, Hsia DY (1967) Phenylalanine-hydroxylase activity in hyperphenylalaninaemia. Lancet 1:928–929PubMedCrossRefGoogle Scholar
  74. 74.
    Binek-Singer P, Johnson TC (1982) The effects of chronic hyperphenylalaninaemia on mouse brain protein synthesis can be prevented by other amino acids. Biochem J 206:407–414PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Pietz J et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103:1169–1178PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Matalon R et al (2003) Future role of large neutral amino acids in transport of phenylalanine into the brain. Pediatrics 112:1570–1574PubMedGoogle Scholar
  77. 77.
    Schindeler S et al (2007) The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab 91:48–54PubMedCrossRefGoogle Scholar
  78. 78.
    Hughes JV, Johnson TC (1978) Experimentally induced and natural recovery from the effects of phenylalanine on brain protein synthesis. Biochim Biophys Acta 517:473–485PubMedCrossRefGoogle Scholar
  79. 79.
    Binek PA, Johnson TC, Kelly CJ (1981) Effect of alpha-methylphenylalanine and phenylalanine on brain polyribosomes and protein synthesis. J Neurochem 36:1476–1484PubMedCrossRefGoogle Scholar
  80. 80.
    Pascucci T et al (2009) 5-Hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. Int J Neuropsychopharmacol 12:1067–1079PubMedCrossRefGoogle Scholar
  81. 81.
    Puglisi-Allegra S et al (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 11:1361–1364PubMedCrossRefGoogle Scholar
  82. 82.
    Burlina AB et al (2000) Measurement of neurotransmitter metabolites in the cerebrospinal fluid of phenylketonuric patients under dietary treatment. J Inherit Metab Dis 23:313–316PubMedCrossRefGoogle Scholar
  83. 83.
    Pascucci T, Ventura R, Puglisi-Allegra S, Cabib S (2002) Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport 13:2561–2564PubMedCrossRefGoogle Scholar
  84. 84.
    McKean CM (1972) The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. Brain Res 47:469–476PubMedCrossRefGoogle Scholar
  85. 85.
    Curtius HC et al (1981) Serotonin and dopamine synthesis in phenylketonuria. Adv Exp Med Biol 133:277–291PubMedCrossRefGoogle Scholar
  86. 86.
    Lou HC, Guttler F, Lykkelund C, Bruhn P, Niederwieser A (1985) Decreased vigilance and neurotransmitter synthesis after discontinuation of dietary treatment for phenylketonuria in adolescents. Eur J Pediatr 144:17–20PubMedCrossRefGoogle Scholar
  87. 87.
    Kienzle Hagen ME et al (2002) Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta 1586:344–352PubMedCrossRefGoogle Scholar
  88. 88.
    Lu L et al (2011) Mechanisms regulating superoxide generation in experimental models of phenylketonuria: an essential role of NADPH oxidase. Mol Genet Metab 104:241–248PubMedCrossRefGoogle Scholar
  89. 89.
    Poncet IB, Berry HK, Butcher RE, Kazmaier KJ (1975) Biochemical effects of induced phenylketonuria in rats. Biol Neonate 26:88–101PubMedCrossRefGoogle Scholar
  90. 90.
    Dhondt JL, Dautrevaux M, Biserte G, Farriaux JP (1977) A new experimental model of hyperphenylalaninemia in rat. Effect of p-chlorophenylalanine and cotrimoxazole. Biochimie 59:713–717PubMedCrossRefGoogle Scholar
  91. 91.
    Schalock RL, Brown WJ, Copenhaver JH, Gunter R (1975) Model phenylketonuria (PKU) in the albino rat: behaviroal, biochemical, and neuroanatomical effects. J Comp Physiol Psychol 89:655–666PubMedCrossRefGoogle Scholar
  92. 92.
    McDonald JD et al (1988) Biochemical defect of the hph-1 mouse mutant is a deficiency in GTP-cyclohydrolase activity. J Neurochem 50:655–657PubMedCrossRefGoogle Scholar
  93. 93.
    Bode VC, McDonald JD, Guenet JL, Simon D (1988) hph-1: a mouse mutant with hereditary hyperphenylalaninemia induced by ethylnitrosourea mutagenesis. Genetics 118:299–305PubMedCentralPubMedGoogle Scholar
  94. 94.
    McDonald JD, Bode VC, Dove WF, Shedlovsky A (1990) The use of N-ethyl-N-nitrosourea to produce mouse models for human phenylketonuria and hyperphenylalaninemia. Prog Clin Biol Res 340C:407–413PubMedGoogle Scholar
  95. 95.
    McDonald JD, Bode VC, Dove WF, Shedlovsky A (1990) Pahhph-5: a mouse mutant deficient in phenylalanine hydroxylase. Proc Natl Acad Sci U S A 87:1965–1967PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Shedlovsky A, McDonald JD, Symula D, Dove WF (1993) Mouse models of human phenylketonuria. Genetics 134:1205–1210PubMedCentralPubMedGoogle Scholar
  97. 97.
    McDonald JD, Charlton CK (1997) Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics 39:402–405PubMedCrossRefGoogle Scholar
  98. 98.
    Ding Z et al (2008) Correction of murine PKU following AAV-mediated intramuscular expression of a complete phenylalanine hydroxylating system. Mol Ther 16:673–681PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Harding CO et al (2006) Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria. Gene Ther 13:457–462PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Ding Z, Georgiev P, Thony B (2006) Administration-route and gender-independent long-term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Ther 13:587–593PubMedCrossRefGoogle Scholar
  101. 101.
    Oh HJ, Park ES, Kang S, Jo I, Jung SC (2004) Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer. Pediatr Res 56:278–284PubMedCrossRefGoogle Scholar
  102. 102.
    Mochizuki S et al (2004) Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice. Gene Ther 11:1081–1086PubMedCrossRefGoogle Scholar
  103. 103.
    Fang B et al (1994) Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene transfer. Gene Ther 1:247–254PubMedGoogle Scholar
  104. 104.
    Harding CO, Neff M, Jones K, Wild K, Wolff JA (2003) Expression of phenylalanine hydroxylase (PAH) in erythrogenic bone marrow does not correct hyperphenylalaninemia in Pah(enu2) mice. J Gene Med 5:984–993PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Nagasaki Y et al (1999) Reversal of hypopigmentation in phenylketonuria mice by adenovirus-mediated gene transfer. Pediatr Res 45:465–473PubMedCrossRefGoogle Scholar
  106. 106.
    Lin CM, Tan Y, Lee YM, Chang CC, Hsiao KJ (1997) Expression of human phenylalanine hydroxylase activity in T lymphocytes of classical phenylketonuria children by retroviral-mediated gene transfer. J Inherit Metab Dis 20:742–754PubMedCrossRefGoogle Scholar
  107. 107.
    Ledley FD, Grenett HE, DiLella AG, Kwok SC, Woo SL (1985) Gene transfer and expression of human phenylalanine hydroxylase. Science 228:77–79PubMedCrossRefGoogle Scholar
  108. 108.
    Robson KJ et al (1984) Sequence comparison of rat liver phenylalanine hydroxylase and its cDNA clones. Biochemistry 23:5671–5675PubMedCrossRefGoogle Scholar
  109. 109.
    Kwok SC, Ledley FD, DiLella AG, Robson KJ, Woo SL (1985) Nucleotide sequence of a full-length complementary DNA clone and amino acid sequence of human phenylalanine hydroxylase. Biochemistry 24:556–561PubMedCrossRefGoogle Scholar
  110. 110.
    Ledley FD, Grenett HE, McGinnis-Shelnutt M, Woo SL (1986) Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells. Proc Natl Acad Sci U S A 83:409–413PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Ding Z, Harding CO, Thony B (2004) State-of-the-art 2003 on PKU gene therapy. Mol Genet Metab 81:3–8PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Oh HJ et al (2005) Reversal of gene expression profile in the phenylketonuria mouse model after adeno-associated virus vector-mediated gene therapy. Mol Genet Metab 86(Suppl 1):S124–S132PubMedCrossRefGoogle Scholar
  113. 113.
    Embury JE et al (2007) PKU is a reversible neurodegenerative process within the nigrostriatum that begins as early as 4 weeks of age in Pah(enu2) mice. Brain Res 1127:136–150PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Yagi H et al (2011) Complete restoration of phenylalanine oxidation in phenylketonuria mouse by a self-complementary adeno-associated virus vector. J Gene Med 13:114–122PubMedCrossRefGoogle Scholar
  115. 115.
    Duncan AW, Dorrell C, Grompe M (2009) Stem cells and liver regeneration. Gastroenterology 137:466–481PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    van Bogaert L, Bertrand I (1949) Sur une idiotie familiale avec degerescence sponglieuse de neuraxe (note preliminaire). Acta Neurol Belg 49:572–587Google Scholar
  117. 117.
    Matalon R et al (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29:463–471PubMedCrossRefGoogle Scholar
  118. 118.
    Matalon R, Michals K, Kaul R (1995) Canavan disease: from spongy degeneration to molecular analysis. J Pediatr 127:511–517PubMedCrossRefGoogle Scholar
  119. 119.
    Adachi M, Schneck L, Cara J, Volk BW (1973) Spongy degeneration of the central nervous system (van Bogaert and Bertrand type; Canavan’s disease). A review. Hum Pathol 4:331–347PubMedCrossRefGoogle Scholar
  120. 120.
    Traeger EC, Rapin I (1998) The clinical course of Canavan disease. Pediatr Neurol 18:207–212PubMedCrossRefGoogle Scholar
  121. 121.
    Matalon R, Michals-Matalon K (1998) Molecular basis of Canavan disease. Eur J Paediatr Neurol 2:69–76PubMedCrossRefGoogle Scholar
  122. 122.
    Sreenivasan P, Purushothaman KK (2013) Radiological clue to diagnosis of Canavan disease. Indian J Pediatr 80(1):75–77PubMedCrossRefGoogle Scholar
  123. 123.
    Pradhan S, Goyal G (2011) Teaching NeuroImages: honeycomb appearance of the brain in a patient with Canavan disease. Neurology 76:e68PubMedCrossRefGoogle Scholar
  124. 124.
    Francis JS, Markov V, Leone P (2014) Dietary triheptanoin rescues oligodendrocyte loss, dysmyelination and motor function in the nur7 mouse model of Canavan disease. J Inherit Metab Dis 37(3):369–381PubMedCrossRefGoogle Scholar
  125. 125.
    Ariyannur PS, Madhavarao CN, Namboodiri AM (2008) N-acetylaspartate synthesis in the brain: mitochondria vs. microsomes. Brain Res 1227:34–41PubMedCrossRefGoogle Scholar
  126. 126.
    Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 59:55–61PubMedCrossRefGoogle Scholar
  127. 127.
    Moffett JR, Namboodiri MA, Cangro CB, Neale JH (1991) Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 2:131–134PubMedCrossRefGoogle Scholar
  128. 128.
    Mersmann N et al (2011) Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease. PLoS One 6:e20336PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Kirmani BF, Jacobowitz DM, Kallarakal AT, Namboodiri MA (2002) Aspartoacylase is restricted primarily to myelin synthesizing cells in the CNS: therapeutic implications for Canavan disease. Brain Res Mol Brain Res 107:176–182PubMedCrossRefGoogle Scholar
  130. 130.
    Baslow MH (1999) The existence of molecular water pumps in the nervous system: a review of the evidence. Neurochem Int 34:77–90PubMedCrossRefGoogle Scholar
  131. 131.
    Baslow MH (1999) Molecular water pumps and the aetiology of Canavan disease: a case of the sorcerer’s apprentice. J Inherit Metab Dis 22:99–101PubMedCrossRefGoogle Scholar
  132. 132.
    Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Taylor DL et al (1995) Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J Neurochem 65:275–281PubMedCrossRefGoogle Scholar
  134. 134.
    Davies SE, Gotoh M, Richards DA, Obrenovitch TP (1998) Hypoosmolarity induces an increase of extracellular N-acetylaspartate concentration in the rat striatum. Neurochem Res 23:1021–1025PubMedCrossRefGoogle Scholar
  135. 135.
    Namboodiri AM et al (2006) Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol 252:216–223PubMedCrossRefGoogle Scholar
  136. 136.
    Kirmani BF, Jacobowitz DM, Namboodiri MA (2003) Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. Brain Res Dev Brain Res 140:105–115PubMedCrossRefGoogle Scholar
  137. 137.
    D’Adamo AF Jr, Gidez LI, Yatsu FM (1968) Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain. Exp Brain Res 5:267–273PubMedGoogle Scholar
  138. 138.
    Pliss L et al (2003) Morphology and ultrastructure of rat hippocampal formation after i.c.v. administration of N-acetyl-L-aspartyl-L-glutamate. Neuroscience 122:93–101PubMedCrossRefGoogle Scholar
  139. 139.
    Kitada K et al (2000) Accumulation of N-acetyl-L-aspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system. J Neurochem 74:2512–2519PubMedCrossRefGoogle Scholar
  140. 140.
    Akimitsu T et al (2000) Epileptic seizures induced by N-acetyl-L-aspartate in rats: in vivo and in vitro studies. Brain Res 861:143–150PubMedCrossRefGoogle Scholar
  141. 141.
    Kolodziejczyk K, Hamilton NB, Wade A, Karadottir R, Attwell D (2009) The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes. Brain 132:1496–1508PubMedCentralPubMedCrossRefGoogle Scholar
  142. 142.
    Surendran S (2010) Upregulation of N-acetylaspartic acid resulting nitric oxide toxicity induces aspartoacylase mutations and protein interaction to cause pathophysiology seen in Canavan disease. Med Hypotheses 75:533–534PubMedCrossRefGoogle Scholar
  143. 143.
    Surendran S, Bhatnagar M (2011) Upregulation of N-acetylaspartic acid induces oxidative stress to contribute in disease pathophysiology. Int J Neurosci 121:305–309PubMedCrossRefGoogle Scholar
  144. 144.
    Francis JS, Strande L, Markov V, Leone P (2012) Aspartoacylase supports oxidative energy metabolism during myelination. J Cereb Blood Flow Metab 32:1725–1736PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Matalon R et al (2000) Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med 2:165–175PubMedCrossRefGoogle Scholar
  146. 146.
    Ahmed SS et al (2013) A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS gene therapy in Canavan mice. Mol Ther 21:2136–2147PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Traka M et al (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 28:11537–11549PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Kile BT et al (2003) Functional genetic analysis of mouse chromosome 11. Nature 425:81–86PubMedCrossRefGoogle Scholar
  149. 149.
    Carpinelli MR et al (2014) A new mouse model of Canavan leukodystrophy displays hearing impairment due to central nervous system dysmyelination. Dis Model Mech 7(6):649–657PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Kaul R, Gao GP, Balamurugan K, Matalon R (1993) Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 5:118–123PubMedCrossRefGoogle Scholar
  151. 151.
    Leone P, Janson CG, McPhee SJ, During MJ (1999) Global CNS gene transfer for a childhood neurogenetic enzyme deficiency: Canavan disease. Curr Opin Mol Ther 1:487–492PubMedGoogle Scholar
  152. 152.
    Leone P et al (2000) Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 48:27–38PubMedCrossRefGoogle Scholar
  153. 153.
    Janson C et al (2002) Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 13:1391–1412PubMedCrossRefGoogle Scholar
  154. 154.
    Matalon R et al (2003) Adeno-associated virus-mediated aspartoacylase gene transfer to the brain of knockout mouse for canavan disease. Mol Ther 7:580–587PubMedCrossRefGoogle Scholar
  155. 155.
    McPhee SW et al (2005) Effects of AAV-2-mediated aspartoacylase gene transfer in the tremor rat model of Canavan disease. Brain Res Mol Brain Res 135:112–121PubMedCrossRefGoogle Scholar
  156. 156.
    Foust KD et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Leone P et al (2012) Long-term follow-up after gene therapy for canavan disease. Sci Transl Med 4:165ra163PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    McPhee SW et al (2006) Immune responses to AAV in a phase I study for Canavan disease. J Gene Med 8:577–588PubMedCrossRefGoogle Scholar
  159. 159.
    Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Stein-Streilein J, Caspi RR (2014) Immune privilege and the philosophy of immunology. Front Immunol 5:110PubMedCentralPubMedCrossRefGoogle Scholar
  161. 161.
    Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM (2009) Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 199:381–390PubMedCrossRefGoogle Scholar
  162. 162.
    Mingozzi F et al (2013) Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue. Gene Ther 20:417–424PubMedCentralPubMedCrossRefGoogle Scholar
  163. 163.
    Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T (2013) Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods 24:59–67PubMedCrossRefGoogle Scholar
  164. 164.
    Mingozzi F et al (2013) Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med 5:194ra192CrossRefGoogle Scholar
  165. 165.
    Basner-Tschakarjan E, Bijjiga E, Martino AT (2014) Pre-clinical assessment of immune responses to adeno-associated virus (AAV) vectors. Front Immunol 5:28PubMedCentralPubMedGoogle Scholar
  166. 166.
    Sanftner LM et al (2004) Striatal delivery of rAAV-hAADC to rats with preexisting immunity to AAV. Mol Ther 9:403–409PubMedCrossRefGoogle Scholar
  167. 167.
    Martino AT et al (2011) The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver. Blood 117:6459–6468PubMedCentralPubMedCrossRefGoogle Scholar
  168. 168.
    Hosel M et al (2012) Toll-like receptor 2-mediated innate immune response in human nonparenchymal liver cells toward adeno-associated viral vectors. Hepatology 55:287–297PubMedCrossRefGoogle Scholar
  169. 169.
    Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924PubMedCrossRefGoogle Scholar
  170. 170.
    Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedCrossRefGoogle Scholar
  171. 171.
    Mingozzi F et al (2007) CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 13:419–422PubMedCrossRefGoogle Scholar
  172. 172.
    Sabatino DE et al (2005) Identification of mouse AAV capsid-specific CD8+ T cell epitopes. Mol Ther 12:1023–1033PubMedCrossRefGoogle Scholar
  173. 173.
    Li H et al (2007) Pre-existing AAV capsid-specific CD8+ T cells are unable to eliminate AAV-transduced hepatocytes. Mol Ther 15:792–800PubMedGoogle Scholar
  174. 174.
    Ciesielska A et al (2013) Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 21:158–166PubMedCentralPubMedCrossRefGoogle Scholar
  175. 175.
    Yang B et al (2014) Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther 22(7):1299–1309PubMedCentralPubMedCrossRefGoogle Scholar
  176. 176.
    Zhang H et al (2011) Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 19:1440–1448PubMedCentralPubMedCrossRefGoogle Scholar
  177. 177.
    Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15(7):445–451PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations