P-Type ATPases pp 443-455 | Cite as

Two-Dimensional Crystallization of Gastric H+,K+-ATPase for Structural Analysis by Electron Crystallography

  • Kazuhiro AbeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1377)


Electron crystallography of two-dimensional (2D) crystals has provided important information on the structural biology of P-type ATPases. Here, I describe the procedure for making 2D crystals of gastric H+,K+-ATPase purified from pig stomach. The 2D crystals are produced by dialyzing detergent-solubilized H+,K+-ATPase mixed with synthetic phospholipids. Removal of the detergent induces the reconstitution of H+,K+-ATPase molecules into the lipid bilayer. In the presence of fluorinated phosphate analogs, or in combination with transporting cations or the specific antagonist SCH28080, H+,K+-ATPase forms crystalline 2D arrays. The molecular conformation and morphology of the 2D crystals vary depending on the crystallizing conditions. Using these 2D crystals, three-dimensional structures of H+,K+-ATPase can be generated by data correction from ice-embedded 2D crystals using cryo-electron microscopy, followed by processing the recorded images using electron crystallography methods.

Key words

Gastric proton pump H+,K+-ATPase Electron crystallography Cryo-electron microscopy Structural analysis Membrane protein Two-dimensional crystal 



The author acknowledges Drs. Tomohiro Nishizawa, Kazutoshi Tani, and Yoshinori Fujiyoshi for their contributions to the development of the 2D H+,K+-ATPase crystallization procedure. This work was supported by Grants-in-Aid for Young Scientist (A) and Platform for Drug Design, Discovery, and Development from METI, Japan.


  1. 1.
    Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32PubMedCrossRefGoogle Scholar
  2. 2.
    Kyogoku Y, Fujiyoshi Y, Shimada I et al (2003) Structural genomics of membrane proteins. Acc Chem Res 36:199–206PubMedCrossRefGoogle Scholar
  3. 3.
    Fujiyoshi Y (1998) The structural study of membrane proteins by electron crystallography. Adv Biophys 35:25–80PubMedCrossRefGoogle Scholar
  4. 4.
    Toyoshima C, Sasabe H, Stokes DL (1993) Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362:467–471PubMedCrossRefGoogle Scholar
  5. 5.
    Hebert H, Purhonen P, Vorum H et al (2001) Three-dimensional structure of renal Na, K-ATPase from cryo-electron microscopy of two-dimensional crystals. J Mol Biol 314:479–494PubMedCrossRefGoogle Scholar
  6. 6.
    Toyoshima C, Nakasako M, Nomura H et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655PubMedCrossRefGoogle Scholar
  7. 7.
    Olesen C, Picard M, Winther AM et al (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042PubMedCrossRefGoogle Scholar
  8. 8.
    Toyoshima C, Norimatsu Y, Iwasawa S et al (2007) How processing of aspartylphosphate is coupled to luminal gating of the ion pathway in the calcium pump. Proc Natl Acad Sci U S A 104:19831–19836PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Toyoshima C (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476:3–11PubMedCrossRefGoogle Scholar
  10. 10.
    Møller JV, Olesen C, Winther A-ML et al (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43:501–566PubMedCrossRefGoogle Scholar
  11. 11.
    Morth JP, Pedersen BP, Toustrup-Jensen MS et al (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049PubMedCrossRefGoogle Scholar
  12. 12.
    Ogawa H, Shinoda T, Cornelius F et al (2009) Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A 106:13742–13747PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Toyoshima C, Cornelius F (2013) New crystal structures of PII-type ATPases: excitement continues. Curr Opin Struct Biol 23:507–514PubMedCrossRefGoogle Scholar
  14. 14.
    Abe K, Tani K, Nishizawa T et al (2009) Inter-subunit interaction of gastric H+,K+-ATPase prevents reverse reaction of the transport cycle. EMBO J 28:1637–1643PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Abe K, Tani K, Fujiyoshi Y (2011) Conformational rearrangement of gastric H+,K+-ATPase with an acid suppressant. Nat Commun 2:155PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Abe K, Tani K, Friedrich T et al (2012) Cryo-EM structure of gastric H+,K+-ATPase with a single occupied cation-binding site. Proc Natl Acad Sci U S A 109:18401–18406PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hiroaki Y, Tani K, Kamegawa A et al (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 355:628–639PubMedCrossRefGoogle Scholar
  18. 18.
    Abe K, Tani K, Fujiyoshi Y (2010) Structural and functional characterization of H+,K+-ATPase with bound fluorinated phosphate analogs. J Struct Biol 170:60–68PubMedCrossRefGoogle Scholar
  19. 19.
    Fan Y, Abe K, Tani K et al (2013) Carbon sandwich preparation preserves quality of two-dimensional crystals for cryo-electron microscopy. Microscopy 62:597–606CrossRefGoogle Scholar
  20. 20.
    Glaeser R, Downing K, Derosier D et al (2007) Electron crystallography of biological macromolecules. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86PubMedCrossRefGoogle Scholar
  22. 22.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248–254CrossRefGoogle Scholar
  23. 23.
    Crowther RA, Henderson R, Smith JM (1996) MRC image processing programs. J Struct Biol 116:9–16PubMedCrossRefGoogle Scholar
  24. 24.
    Nishizawa T, Abe K, Tani K et al (2008) Structural analysis of 2D crystals of gastric H+,K+-ATPase in different states of the transport cycle. J Struct Biol 162:219–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Cellular and Structural Physiology InstituteNagoya UniversityNagoyaJapan
  2. 2.Department of Medicinal ScienceGraduate School of Pharmaceutical Sciences, Nagoya UniversityNagoyaJapan

Personalised recommendations