Analyzing Protein–Phosphoinositide Interactions with Liposome Flotation Assays

  • Ricarda A. Busse
  • Andreea Scacioc
  • Amanda M. Schalk
  • Roswitha Krick
  • Michael Thumm
  • Karin KühnelEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1376)


Liposome flotation assays are a convenient tool to study protein–phosphoinositide interactions. Working with liposomes resembles physiological conditions more than protein–lipid overlay assays, which makes this method less prone to detect false positive interactions. However, liposome lipid composition must be well-considered in order to prevent nonspecific binding of the protein through electrostatic interactions with negatively charged lipids like phosphatidylserine. In this protocol we use the PROPPIN Hsv2 (homologous with swollen vacuole phenotype 2) as an example to demonstrate the influence of liposome lipid composition on binding and show how phosphoinositide binding specificities of a protein can be characterized with this method.

Key words

Analytical ultracentrifuge Small unilamellar vesicles Protein–lipid overlay assay PROPPIN Hsv2 



We thank Geert van den Bogaart for advice and discussions. This work was supported by a SFB860 grant to M.T. and K.K.


  1. 1.
    Kelly BT, McCoy AJ, Spate K, Miller SE, Evans PR, Honing S, Owen DJ (2008) A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456(7224):976–979. doi: 10.1038/nature07422 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH, Parker PJ, Lemmon MA (2004) Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J 23(9):1922–1933. doi: 10.1038/sj.emboj.7600203 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yu JW, Lemmon MA (2001) All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem 276(47):44179–44184. doi: 10.1074/jbc.M108811200 PubMedCrossRefGoogle Scholar
  4. 4.
    Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A, Thumm M, Kühnel K (2012) Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta-propeller protein family. Proc Natl Acad Sci U S A 109(30):E2042–E2049. doi: 10.1073/pnas.1205128109 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Baskaran S, Ragusa MJ, Boura E, Hurley JH (2012) Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell 47(3):339–348. doi: 10.1016/j.molcel.2012.05.027 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Corbin JA, Evans JH, Landgraf KE, Falke JJ (2007) Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity. Biochemistry 46(14):4322–4336. doi: 10.1021/bi062140c PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Perez-Lara A, Egea-Jimenez AL, Ausili A, Corbalan-Garcia S, Gomez-Fernandez JC (2012) The membrane binding kinetics of full-length PKCalpha is determined by membrane lipid composition. Biochim Biophys Acta 1821(11):1434–1442. doi: 10.1016/j.bbalip.2012.06.012 PubMedCrossRefGoogle Scholar
  8. 8.
    Busse RA, Scacioc A, Hernandez JM, Krick R, Stephan M, Janshoff A, Thumm M, Kühnel K (2013) Qualitative and quantitative characterization of protein-phosphoinositide interactions with liposome-based methods. Autophagy 9(5):770–777. doi: 10.4161/auto.23978 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111. doi: 10.1038/nrm2328 PubMedCrossRefGoogle Scholar
  10. 10.
    Narayan K, Lemmon MA (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39(2):122–133. doi: 10.1016/j.ymeth.2006.05.006 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yu JW, Mendrola JM, Audhya A, Singh S, Keleti D, DeWald DB, Murray D, Emr SD, Lemmon MA (2004) Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell 13(5):677–688PubMedCrossRefGoogle Scholar
  12. 12.
    Gallego O, Betts MJ, Gvozdenovic-Jeremic J, Maeda K, Matetzki C, Aguilar-Gurrieri C, Beltran-Alvarez P, Bonn S, Fernandez-Tornero C, Jensen LJ, Kuhn M, Trott J, Rybin V, Muller CW, Bork P, Kaksonen M, Russell RB, Gavin AC (2010) A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 6:430. doi: 10.1038/msb.2010.87 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    van den Bogaart G, Holt MG, Bunt G, Riedel D, Wouters FS, Jahn R (2010) One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol 17(3):358–364. doi: 10.1038/nsmb.1748 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schuette CG, Hatsuzawa K, Margittai M, Stein A, Riedel D, Kuster P, Konig M, Seidel C, Jahn R (2004) Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc Natl Acad Sci U S A 101(9):2858–2863. doi: 10.1073/pnas.0400044101 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419(1):1–13. doi: 10.1042/BJ20081950 PubMedCrossRefGoogle Scholar
  16. 16.
    Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, Inagaki F, Ohsumi Y, Noda NN (2012) Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem 287(38):31681–31690. doi: 10.1074/jbc.M112.397570 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Krick R, Tolstrup J, Appelles A, Henke S, Thumm M (2006) The relevance of the phosphatidylinositolphosphat-binding motif FRRGT of Atg18 and Atg21 for the Cvt pathway and autophagy. FEBS Lett 580(19):4632–4638. doi: 10.1016/j.febslet.2006.07.041 PubMedCrossRefGoogle Scholar
  18. 18.
    Stromhaug PE, Reggiori F, Guan J, Wang CW, Klionsky DJ (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15(8):3553–3566. doi: 10.1091/mbc.E04-02-0147 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bieniossek C, Nie Y, Frey D, Olieric N, Schaffitzel C, Collinson I, Romier C, Berger P, Richmond TJ, Steinmetz MO, Berger I (2009) Automated unrestricted multigene recombineering for multiprotein complex production. Nat Methods 6(6):447–450. doi: 10.1038/nmeth.1326 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ricarda A. Busse
    • 1
  • Andreea Scacioc
    • 1
  • Amanda M. Schalk
    • 1
    • 2
  • Roswitha Krick
    • 3
  • Michael Thumm
    • 3
  • Karin Kühnel
    • 1
    Email author
  1. 1.Department of NeurobiologyMax-Planck-Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Department of Biochemistry and Molecular GeneticsUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Institute of Cellular BiochemistryUniversity Medicine, Georg-August UniversityGöttingenGermany

Personalised recommendations