Identifying Gene Regulatory Networks in Arabidopsis by In Silico Prediction, Yeast-1-Hybrid, and Inducible Gene Profiling Assays

  • Erin E. Sparks
  • Philip N. BenfeyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1370)


A system-wide understanding of gene regulation will provide deep insights into plant development and physiology. In this chapter we describe a threefold approach to identify the gene regulatory networks in Arabidopsis thaliana that function in a specific tissue or biological process. Since no single method is sufficient to establish comprehensive and high-confidence gene regulatory networks, we focus on the integration of three approaches. First, we describe an in silico prediction method of transcription factor–DNA binding, then an in vivo assay of transcription factor–DNA binding by yeast-1-hybrid and lastly the identification of co-expression clusters by transcription factor induction in planta. Each of these methods provides a unique tool to advance our understanding of gene regulation, and together provide a robust model for the generation of gene regulatory networks.

Key words

Gene regulatory networks Transcription factor–DNA binding In silico prediction Yeast-1-hybrid Inducible gene expression 



We gratefully acknowledge members of the Benfey lab for their comments on this chapter and Siobhan Brady for instruction on yeast-1-hybrid assays. Research in the Benfey lab is supported by funding from the National Institutes of Health, the National Science Foundation, and the Gordon and Betty Moore Foundation.


  1. 1.
    Bassel GW, Gaudinier A, Brady SM, Hennig L, Rhee SY, De Smet I (2012) Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. Plant Cell 24:3859–3875. doi: 10.1105/tpc.112.100776 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Gene regulatory networks - methods and protocols. (2012) Eds. Deplancke B and Gheldof N. ISBN 978-1-61779-292-2Google Scholar
  3. 3.
    Rim Y, Huang L, Chu H, Han X, Cho WK, Jeon CO, Kim HJ, Hong J-C, Lucas WJ, Kim J-Y (2011) Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns. Mol Cells 32:519–526. doi: 10.1007/s10059-011-0135-2 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Brady SM, Zhang L, Megraw M, Martinez NJ, Jiang E, Yi CS, Liu W, Zeng A, Taylor-Teeples M, Kim D, Ahnert S, Ohler U, Ware D, Walhout AJM, Benfey PN (2011) A stele-enriched gene regulatory network in the Arabidopsis root. Mol Syst Biol 7:1–9. doi: 10.1038/msb.2010.114 Google Scholar
  5. 5.
    Gubelmann C, Waszak SM, Isakova A, Holcombe W, Hens K, Iagovitina A, Feuz J-D, Raghav SK, Simicevic J, Deplancke B (2013) msb201338. Mol Syst Biol 9:1–18. doi: 10.1038/msb.2013.38 CrossRefGoogle Scholar
  6. 6.
    Yamaguchi N, Winter CM, Wu M-F, Kwon CS, William DA, Wagner D (2014) Chromatin immunoprecipitation from Arabidopsis tissues. Arabidopsis Book 12:1–9. doi: 10.1199/tab.0170 CrossRefGoogle Scholar
  7. 7.
    Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806. doi: 10.1126/science.1146265 CrossRefPubMedGoogle Scholar
  8. 8.
    Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JAH, Benfey PN (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–132. doi: 10.1038/nature09143 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Deplancke B (2004) A gateway-compatible yeast one-hybrid system. Genome Res 14:2093–2101. doi: 10.1101/gr.2445504 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Deplancke B, Vermeirssen V, Arda HE, Martinez NJ, Walhout AJM (2006) Gateway-compatible yeast one-hybrid screens. CSH Protoc. doi: 10.1101/pdb.prot4590 PubMedGoogle Scholar
  11. 11.
    Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018. doi: 10.1093/bioinformatics/btr064 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. doi: 10.1093/nar/gkp335 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Gaudinier A, Zhang L, Reece-Hoyes JS, Taylor-Teeples M, Pu L, Liu Z, Breton G, Pruneda-Paz JL, Kim D, Kay SA, Walhout AJM, Ware D, Brady SM (2011) Enhanced Y1H assays for Arabidopsis. Nat Methods 8:1053–1055. doi: 10.1038/nmeth.1750 CrossRefPubMedGoogle Scholar
  14. 14.
    Clough SJ, Bent AF (1998) Floral dip: a simplified method forAgrobacterium‐mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  15. 15.
    Yamamoto YY, Yoshioka Y, Hyakumachi M, Obokata J (2011) Characteristics of core promoter types with respect to gene structure and expression in Arabidopsis thaliana. DNA Res 18:333–342. doi: 10.1093/dnares/dsr020 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Weirauch MT, Yang A, Albu M, Cote A, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K, Zheng H, Goity A, van Bakel H, Lozano J-C, Galli M, Lewsey M, Huang E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G, Walhout AJM, Bouget F-Y, Ratsch G, Larrondo LF, Ecker JR, Hughes TR. (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158(6):1431–43. doi:  10.1016/j.cell.2014.08.009 Google Scholar
  17. 17.
    Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res 39:D1118–D1122. doi: 10.1093/nar/gkq1120 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Matys V (2006) TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34:D108–D110. doi: 10.1093/nar/gkj143 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Chai C, Xie Z, Grotewold E (2011) SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a powerful tool for deciphering the protein–DNA interaction space. In: Methods in molecular biology. Humana Press, Totowa, NJ, Eds. Ling Yuan and Sharyn E. Perry pp 249–258Google Scholar
  20. 20.
    Alexandrov NN, Troukhan ME, Brover VV, Tatarinova T, Flavell RB, Feldmann KA (2006) Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol 60:69–85. doi: 10.1007/s11103-005-2564-9 CrossRefPubMedGoogle Scholar
  21. 21.
    Lee J-Y, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN (2006) Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci U S A 103:6055–6060. doi: 10.1073/pnas.0510607103 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Coego A, Brizuela E, Castillejo P, Ruíz S, Koncz C, del Pozo JC, Piñeiro M, Jarillo JA, Paz-Ares J, León J, The TRANSPLANTA Consortium (2014) The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant J 77:944–953. doi: 10.1111/tpj.12443 CrossRefPubMedGoogle Scholar
  23. 23.
    Aoyama T, Chua N-H (1997) A glucocorticoid‐mediated transcriptional induction system in transgenic plants. Plant J 11:605–612. doi: 10.1104/pp.110.154013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiologyDuke UniversityDurhamUSA
  2. 2.Howard Hughes Medical InstituteDuke UniversityDurhamUSA

Personalised recommendations