Recent Advances in the Treatment of Immune-Mediated Inflammatory Diseases

Part of the Methods in Molecular Biology book series (MIMB, volume 1371)


The treatment of immune-mediated inflammatory diseases (IMIDs) has dramatically improved over the last two decades by the development of a series of targeted biological therapies. This paper focuses on new developments in the treatment of IMIDs. In particular, we discuss how different ways of targeting the same mediators can lead to different efficacy and safety profiles, using B cell targeting as example. In addition, we discuss the emerging field of ‘small molecules’ that target specifically intracellular processes related to cytokine signaling, cell activation, cell migration, and other processes relevant to tissue inflammation.

Key words

Immune-mediated inflammatory diseases Treatment B cells Signal transduction 



SWT is supported by a VENI grant and a Clinical Fellowship from the Netherlands Organization for Scientific Research (NWO/ZonMw), and grants from the Dutch Arthritis Foundation. DLB is supported by a VICI grant from the Netherlands Organization for Scientific Research (NWO), and grants from the Dutch Arthritis Foundation.

Disclosure of conflicts of interest: The authors declare no competing financial interests.


  1. 1.
    Edwards JC, Szczepanski L, Szechinski J et al (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581CrossRefPubMedGoogle Scholar
  2. 2.
    Stone JH, Merkel PA, Spiera R et al (2010) Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363:221–232PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Looney RJ, Anolik J, Sanz I (2010) A perspective on B-cell-targeting therapy for SLE. Mod Rheumatol 20:1–10PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Looney RJ, Anolik JH, Campbell D et al (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50:2580–2589CrossRefPubMedGoogle Scholar
  5. 5.
    Smith V, Piette Y, van Praet JT et al (2013) Two-year results of an open pilot study of a 2-treatment course with rituximab in patients with early systemic sclerosis with diffuse skin involvement. J Rheumatol 40:52–57CrossRefPubMedGoogle Scholar
  6. 6.
    Meijer JM, Meiners PM, Vissink A et al (2010) Effectiveness of rituximab treatment in primary Sjogren’s syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 62:960–968CrossRefPubMedGoogle Scholar
  7. 7.
    Hauser SL, Waubant E, Arnold DL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688CrossRefPubMedGoogle Scholar
  8. 8.
    Bluml S, McKeever K, Ettinger R, Smolen J, Herbst R (2013) B-cell targeted therapeutics in clinical development. Arthritis Res Ther 15(Suppl 1):S4PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Tan CS, Koralnik IJ (2010) Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 9:425–437PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Castillo J, Milani C, Mendez-Allwood D (2009) Ofatumumab, a second-generation anti-CD20 monoclonal antibody, for the treatment of lymphoproliferative and autoimmune disorders. Expert Opin Investig Drugs 18:491–500CrossRefPubMedGoogle Scholar
  11. 11.
    Taylor PC, Quattrocchi E, Mallett S, Kurrasch R, Petersen J, Chang DJ (2011) Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis 70:2119–2125PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Ostergaard M, Baslund B, Rigby W et al (2010) Ofatumumab, a human anti-CD20 monoclonal antibody, for treatment of rheumatoid arthritis with an inadequate response to one or more disease-modifying antirheumatic drugs: results of a randomized, double-blind, placebo-controlled, phase I/II study. Arthritis Rheum 62:2227–2238CrossRefPubMedGoogle Scholar
  13. 13.
    Sorensen PS, Lisby S, Grove R et al (2014) Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology 82:573–581CrossRefPubMedGoogle Scholar
  14. 14.
    Kausar F, Mustafa K, Sweis G et al (2009) Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert Opin Biol Ther 9:889–895CrossRefPubMedGoogle Scholar
  15. 15.
    Rigby W, Tony HP, Oelke K et al (2012) Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a forty-eight-week randomized, double-blind, placebo-controlled, parallel-group phase III trial. Arthritis Rheum 64:350–359CrossRefPubMedGoogle Scholar
  16. 16.
    Tak PP, Mease PJ, Genovese MC et al (2012) Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to at least one tumor necrosis factor inhibitor: results of a forty-eight-week randomized, double-blind, placebo-controlled, parallel-group phase III trial. Arthritis Rheum 64:360–370CrossRefPubMedGoogle Scholar
  17. 17.
    Mysler EF, Spindler AJ, Guzman R et al (2013) Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum 65:2368–2379CrossRefPubMedGoogle Scholar
  18. 18.
    Kappos L, Li D, Calabresi PA et al (2011) Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378:1779–1787CrossRefPubMedGoogle Scholar
  19. 19.
    Liebman HA, Saleh MN, Bussel JB et al (2013) Low-dose anti-CD20 veltuzumab given intravenously or subcutaneously is active in relapsed immune thrombocytopenia: a phase I study. Br J Haematol 162:693–701CrossRefPubMedGoogle Scholar
  20. 20.
    Goldenberg DM, Morschhauser F, Wegener WA (2010) Veltuzumab (humanized anti-CD20 monoclonal antibody): characterization, current clinical results, and future prospects. Leuk Lymphoma 51:747–755CrossRefPubMedGoogle Scholar
  21. 21.
    Tedder TF (2009) CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 5:572–577CrossRefPubMedGoogle Scholar
  22. 22.
    Yazawa N, Hamaguchi Y, Poe JC, Tedder TF (2005) Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci U S A 102:15178–15183PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Herbst R, Wang Y, Gallagher S et al (2010) B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 335:213–222CrossRefPubMedGoogle Scholar
  24. 24.
    Deiss A, Brecht I, Haarmann A, Buttmann M (2013) Treating multiple sclerosis with monoclonal antibodies: a 2013 update. Expert Rev Neurother 13:313–335CrossRefPubMedGoogle Scholar
  25. 25.
    Dorner T, Shock A, Smith KG (2012) CD22 and autoimmune disease. Int Rev Immunol 31:363–378CrossRefPubMedGoogle Scholar
  26. 26.
    Tedder TF, Poe JC, Haas KM (2005) CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol 88:1–50CrossRefPubMedGoogle Scholar
  27. 27.
    Carnahan J, Stein R, Qu Z et al (2007) Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol 44:1331–1341CrossRefPubMedGoogle Scholar
  28. 28.
    Steinfeld SD, Tant L, Burmester GR et al (2006) Epratuzumab (humanised anti-CD22 antibody) in primary Sjogren’s syndrome: an open-label phase I/II study. Arthritis Res Ther 8:R129PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Wallace DJ, Kalunian K, Petri MA et al (2014) Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis 73:183–190PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Wallace DJ, Gordon C, Strand V et al (2013) Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology (Oxford) 52:1313–1322CrossRefGoogle Scholar
  31. 31.
    Avery DT, Kalled SL, Ellyard JI et al (2003) BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 112:286–297PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Baker KP, Edwards BM, Main SH et al (2003) Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 48:3253–3265CrossRefPubMedGoogle Scholar
  33. 33.
    Navarra SV, Guzman RM, Gallacher AE et al (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377:721–731CrossRefPubMedGoogle Scholar
  34. 34.
    Stohl W, Merrill JT, McKay JD et al (2013) Efficacy and safety of belimumab in patients with rheumatoid arthritis: a phase II, randomized, double-blind, placebo-controlled, dose-ranging Study. J Rheumatol 40:579–589CrossRefPubMedGoogle Scholar
  35. 35.
    Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F (2013) The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 24:203–215CrossRefPubMedGoogle Scholar
  36. 36.
    Davidson A (2010) Targeting BAFF in autoimmunity. Curr Opin Immunol 22:732–739PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Genovese MC, Lee E, Satterwhite J et al (2013) A phase 2 dose-ranging study of subcutaneous tabalumab for the treatment of patients with active rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 72:1453–1460CrossRefPubMedGoogle Scholar
  38. 38.
    Stohl W (2014) Therapeutic targeting of the BAFF/APRIL axis in systemic lupus erythematosus. Expert Opin Ther Targets 18:473–489CrossRefPubMedGoogle Scholar
  39. 39.
    Gensicke H, Leppert D, Yaldizli O et al (2012) Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs 26:11–37CrossRefPubMedGoogle Scholar
  40. 40.
    Gatto B (2008) Atacicept, a homodimeric fusion protein for the potential treatment of diseases triggered by plasma cells. Curr Opin Investig Drugs 9:1216–1227PubMedGoogle Scholar
  41. 41.
    Schneider P (2005) The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol 17:282–289CrossRefPubMedGoogle Scholar
  42. 42.
    Dall’Era M, Chakravarty E, Wallace D et al (2007) Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 56:4142–4150CrossRefPubMedGoogle Scholar
  43. 43.
    van Vollenhoven RF, Kinnman N, Vincent E, Wax S, Bathon J (2011) Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum 63:1782–1792CrossRefPubMedGoogle Scholar
  44. 44.
    Genovese MC, Kinnman N, de La BG, Pena RC, Tak PP (2011) Atacicept in patients with rheumatoid arthritis and an inadequate response to tumor necrosis factor antagonist therapy: results of a phase II, randomized, placebo-controlled, dose-finding trial. Arthritis Rheum 63:1793–1803CrossRefPubMedGoogle Scholar
  45. 45.
    Kappos L, Hartung HP, Freedman MS et al (2014) Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol 13:353–363CrossRefPubMedGoogle Scholar
  46. 46.
    Fernandez L, Salinas GF, Rocha C et al (2013) The TNF family member APRIL dampens collagen-induced arthritis. Ann Rheum Dis 72:1367–1374CrossRefPubMedGoogle Scholar
  47. 47.
    Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692CrossRefPubMedGoogle Scholar
  48. 48.
    Hammaker D, Firestein GS (2010) “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis 69(Suppl 1):i77–i82PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Hommes D, van den Blink B, Plasse T et al (2002) Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology 122:7–14CrossRefPubMedGoogle Scholar
  50. 50.
    Dotan I, Rachmilewitz D, Schreiber S et al (2010) A randomised placebo-controlled multicentre trial of intravenous semapimod HCl for moderate to severe Crohn’s disease. Gut 59:760–766CrossRefPubMedGoogle Scholar
  51. 51.
    Salh B (2007) c-Jun N-terminal kinases as potential therapeutic targets. Expert Opin Ther Targets 11:1339–1353CrossRefPubMedGoogle Scholar
  52. 52.
    Guma M, Firestein GS (2012) c-Jun N-terminal kinase in inflammation and rheumatic diseases. Open Rheumatol J 6:220–231PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Han Z, Boyle DL, Chang L et al (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108:73–81PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21:223–244PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733CrossRefPubMedGoogle Scholar
  56. 56.
    Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Tak PP, Gerlag DM, Aupperle KR et al (2001) Inhibitor of nuclear factor kappaB kinase beta is a key regulator of synovial inflammation. Arthritis Rheum 44:1897–1907CrossRefPubMedGoogle Scholar
  58. 58.
    Tas SW, Vervoordeldonk MJ, Hajji N, May MJ, Ghosh S, Tak PP (2006) Local treatment with the selective IkappaB kinase beta inhibitor NEMO-binding domain peptide ameliorates synovial inflammation. Arthritis Res Ther 8:R86PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Kwak JH, Jung JK, Lee H (2011) Nuclear factor-kappa B inhibitors; a patent review (2006-2010). Expert Opin Ther Pat 21:1897–1910CrossRefPubMedGoogle Scholar
  60. 60.
    Sehnert B, Burkhardt H, Wessels JT et al (2013) NF-kappaB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-kappaB in immune-mediated diseases. Proc Natl Acad Sci U S A 110:16556–16561PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Sun SC (2012) The noncanonical NF-kappaB pathway. Immunol Rev 246:125–140PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Noort AR, van Zoest KP, Weijers EM et al (2014) NF-kappaB inducing kinase is a key regulator of inflammation-induced and tumor-associated angiogenesis. J Pathol 234:375PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Li K, McGee LR, Fisher B et al (2013) Inhibiting NF-kappaB-inducing kinase (NIK): discovery, structure-based design, synthesis, structure-activity relationship, and co-crystal structures. Bioorg Med Chem Lett 23:1238–1244CrossRefPubMedGoogle Scholar
  64. 64.
    Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3:900–911CrossRefPubMedGoogle Scholar
  65. 65.
    Milici AJ, Kudlacz EM, Audoly L, Zwillich S, Changelian P (2008) Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res Ther 10:R14PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Changelian PS, Flanagan ME, Ball DJ et al (2003) Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302:875–878CrossRefPubMedGoogle Scholar
  67. 67.
    Fleischmann R, Kremer J, Cush J et al (2012) Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 367:495–507CrossRefPubMedGoogle Scholar
  68. 68.
    Burmester GR, Blanco R, Charles-Schoeman C et al (2013) Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381:451–460CrossRefPubMedGoogle Scholar
  69. 69.
    Sandborn WJ, Ghosh S, Panes J et al (2012) Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med 367:616–624CrossRefPubMedGoogle Scholar
  70. 70.
    Boy MG, Wang C, Wilkinson BE et al (2009) Double-blind, placebo-controlled, dose-escalation study to evaluate the pharmacologic effect of CP-690,550 in patients with psoriasis. J Invest Dermatol 129:2299–2302CrossRefPubMedGoogle Scholar
  71. 71.
    Smolen JS, Landewe R, Breedveld FC et al (2014) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis 73:492–509PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Baeten DL, Kuchroo VK (2013) How Cytokine networks fuel inflammation: interleukin-17 and a tale of two autoimmune diseases. Nat Med 19:824–825CrossRefPubMedGoogle Scholar
  73. 73.
    Yeremenko N, Paramarta JE, Baeten D (2014) The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. Curr Opin Rheumatol 26:361–370CrossRefPubMedGoogle Scholar
  74. 74.
    Byrne H, Conroy PJ, Whisstock JC, O’Kennedy RJ (2013) A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol 31:621–632CrossRefPubMedGoogle Scholar
  75. 75.
    Rossi EA, Chang CH, Goldenberg DM (2014) Anti-CD22/CD20 Bispecific antibody with enhanced trogocytosis for treatment of Lupus. PLoS One 9:e98315PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Grabiec AM, Reedquist KA (2013) The ascent of acetylation in the epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 9:311–318CrossRefPubMedGoogle Scholar
  77. 77.
    Vojinovic J, Damjanov N, D’Urzo C et al (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 63:1452–1458CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Clinical Immunology & Rheumatology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Experimental Immunology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations