Advertisement

Parallel Syntheses of Peptides on Teflon-Patterned Paper Arrays (SyntArrays)

  • Frédérique Deiss
  • Yang Yang
  • Ratmir DerdaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1368)

Abstract

Screening of peptides to find the ligands that bind to specific targets is an important step in drug discovery. These high-throughput screens require large number of structural variants of peptides to be synthesized and tested. This chapter describes the generation of arrays of peptides on Teflon-patterned sheets of paper. First, the protocol describes the patterning of paper with a Teflon solution to produce arrays with solvophobic barriers that are able to confine organic solvents. Next, we describe the parallel syntheses of 96 peptides on Teflon-patterned arrays using the SPOT synthesis method.

Key words

Peptides Paper array Paper patterning SPOT synthesis Ligand screening 

References

  1. 1.
    Lam KS et al (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354(6348):82–84CrossRefPubMedGoogle Scholar
  2. 2.
    Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105(11):4056–4072CrossRefPubMedGoogle Scholar
  3. 3.
    Koivunen E, Wang B, Ruoslahti E (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Nat Biotechnol 13(3):265–270CrossRefGoogle Scholar
  4. 4.
    Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557CrossRefPubMedGoogle Scholar
  5. 5.
    Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94(23):12297–12302PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Pauloehrl T et al (2013) Spatially controlled surface immobilization of nonmodified peptides. Angew Chem-Int Ed 52(37):9714–9718CrossRefGoogle Scholar
  7. 7.
    Pirrung MC (1997) Spatially addressable combinatorial libraries. Chem Rev 97(2):473–488CrossRefPubMedGoogle Scholar
  8. 8.
    Frank R (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48(42):9217–9232CrossRefGoogle Scholar
  9. 9.
    Blackwell HE (2006) Hitting the SPOT: small-molecule macroarrays advance combinatorial synthesis. Curr Opin Chem Biol 10(3):203–212CrossRefPubMedGoogle Scholar
  10. 10.
    Deiss F et al (2014) Flow-through synthesis on teflon-patterned paper to produce peptide arrays for cell-based assays. Angew Chem-Int Ed 53(25):6374–6377CrossRefGoogle Scholar
  11. 11.
    Hilpert K, Winkler DFH, Hancock REW (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat Protoc 2(6):1333–1349CrossRefPubMedGoogle Scholar
  12. 12.
    Martinez AW et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46(8):1318–1320CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Alberta Glycomics CenterUniversity of AlbertaEdmontonCanada

Personalised recommendations